This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absolute value of a nonpositive difference. (Contributed by FL, 3-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abssuble0 | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( abs ` ( A - B ) ) = ( B - A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | |- ( A e. RR -> A e. CC ) |
|
| 2 | recn | |- ( B e. RR -> B e. CC ) |
|
| 3 | abssub | |- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A - B ) ) = ( abs ` ( B - A ) ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( abs ` ( A - B ) ) = ( abs ` ( B - A ) ) ) |
| 5 | 4 | 3adant3 | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( abs ` ( A - B ) ) = ( abs ` ( B - A ) ) ) |
| 6 | abssubge0 | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( abs ` ( B - A ) ) = ( B - A ) ) |
|
| 7 | 5 6 | eqtrd | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( abs ` ( A - B ) ) = ( B - A ) ) |