This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absolute value of a number that has been decomposed into real and imaginary parts. (Contributed by NM, 14-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absreim | |- ( ( A e. RR /\ B e. RR ) -> ( abs ` ( A + ( _i x. B ) ) ) = ( sqrt ` ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | |- ( A e. RR -> A e. CC ) |
|
| 2 | ax-icn | |- _i e. CC |
|
| 3 | recn | |- ( B e. RR -> B e. CC ) |
|
| 4 | mulcl | |- ( ( _i e. CC /\ B e. CC ) -> ( _i x. B ) e. CC ) |
|
| 5 | 2 3 4 | sylancr | |- ( B e. RR -> ( _i x. B ) e. CC ) |
| 6 | addcl | |- ( ( A e. CC /\ ( _i x. B ) e. CC ) -> ( A + ( _i x. B ) ) e. CC ) |
|
| 7 | 1 5 6 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( A + ( _i x. B ) ) e. CC ) |
| 8 | abscl | |- ( ( A + ( _i x. B ) ) e. CC -> ( abs ` ( A + ( _i x. B ) ) ) e. RR ) |
|
| 9 | 7 8 | syl | |- ( ( A e. RR /\ B e. RR ) -> ( abs ` ( A + ( _i x. B ) ) ) e. RR ) |
| 10 | absge0 | |- ( ( A + ( _i x. B ) ) e. CC -> 0 <_ ( abs ` ( A + ( _i x. B ) ) ) ) |
|
| 11 | 7 10 | syl | |- ( ( A e. RR /\ B e. RR ) -> 0 <_ ( abs ` ( A + ( _i x. B ) ) ) ) |
| 12 | sqrtsq | |- ( ( ( abs ` ( A + ( _i x. B ) ) ) e. RR /\ 0 <_ ( abs ` ( A + ( _i x. B ) ) ) ) -> ( sqrt ` ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) ) = ( abs ` ( A + ( _i x. B ) ) ) ) |
|
| 13 | 9 11 12 | syl2anc | |- ( ( A e. RR /\ B e. RR ) -> ( sqrt ` ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) ) = ( abs ` ( A + ( _i x. B ) ) ) ) |
| 14 | absreimsq | |- ( ( A e. RR /\ B e. RR ) -> ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
|
| 15 | 14 | fveq2d | |- ( ( A e. RR /\ B e. RR ) -> ( sqrt ` ( ( abs ` ( A + ( _i x. B ) ) ) ^ 2 ) ) = ( sqrt ` ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) |
| 16 | 13 15 | eqtr3d | |- ( ( A e. RR /\ B e. RR ) -> ( abs ` ( A + ( _i x. B ) ) ) = ( sqrt ` ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) |