This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Abelian group subtraction of two inverses. (Contributed by Stefan O'Rear, 24-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablsub2inv.b | |- B = ( Base ` G ) |
|
| ablsub2inv.m | |- .- = ( -g ` G ) |
||
| ablsub2inv.n | |- N = ( invg ` G ) |
||
| ablsub2inv.g | |- ( ph -> G e. Abel ) |
||
| ablsub2inv.x | |- ( ph -> X e. B ) |
||
| ablsub2inv.y | |- ( ph -> Y e. B ) |
||
| Assertion | ablsub2inv | |- ( ph -> ( ( N ` X ) .- ( N ` Y ) ) = ( Y .- X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablsub2inv.b | |- B = ( Base ` G ) |
|
| 2 | ablsub2inv.m | |- .- = ( -g ` G ) |
|
| 3 | ablsub2inv.n | |- N = ( invg ` G ) |
|
| 4 | ablsub2inv.g | |- ( ph -> G e. Abel ) |
|
| 5 | ablsub2inv.x | |- ( ph -> X e. B ) |
|
| 6 | ablsub2inv.y | |- ( ph -> Y e. B ) |
|
| 7 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 8 | ablgrp | |- ( G e. Abel -> G e. Grp ) |
|
| 9 | 4 8 | syl | |- ( ph -> G e. Grp ) |
| 10 | 1 3 | grpinvcl | |- ( ( G e. Grp /\ X e. B ) -> ( N ` X ) e. B ) |
| 11 | 9 5 10 | syl2anc | |- ( ph -> ( N ` X ) e. B ) |
| 12 | 1 7 2 3 9 11 6 | grpsubinv | |- ( ph -> ( ( N ` X ) .- ( N ` Y ) ) = ( ( N ` X ) ( +g ` G ) Y ) ) |
| 13 | 1 7 | ablcom | |- ( ( G e. Abel /\ ( N ` X ) e. B /\ Y e. B ) -> ( ( N ` X ) ( +g ` G ) Y ) = ( Y ( +g ` G ) ( N ` X ) ) ) |
| 14 | 4 11 6 13 | syl3anc | |- ( ph -> ( ( N ` X ) ( +g ` G ) Y ) = ( Y ( +g ` G ) ( N ` X ) ) ) |
| 15 | 1 3 | grpinvinv | |- ( ( G e. Grp /\ Y e. B ) -> ( N ` ( N ` Y ) ) = Y ) |
| 16 | 9 6 15 | syl2anc | |- ( ph -> ( N ` ( N ` Y ) ) = Y ) |
| 17 | 16 | oveq1d | |- ( ph -> ( ( N ` ( N ` Y ) ) ( +g ` G ) ( N ` X ) ) = ( Y ( +g ` G ) ( N ` X ) ) ) |
| 18 | 14 17 | eqtr4d | |- ( ph -> ( ( N ` X ) ( +g ` G ) Y ) = ( ( N ` ( N ` Y ) ) ( +g ` G ) ( N ` X ) ) ) |
| 19 | 1 3 | grpinvcl | |- ( ( G e. Grp /\ Y e. B ) -> ( N ` Y ) e. B ) |
| 20 | 9 6 19 | syl2anc | |- ( ph -> ( N ` Y ) e. B ) |
| 21 | 1 7 3 | grpinvadd | |- ( ( G e. Grp /\ X e. B /\ ( N ` Y ) e. B ) -> ( N ` ( X ( +g ` G ) ( N ` Y ) ) ) = ( ( N ` ( N ` Y ) ) ( +g ` G ) ( N ` X ) ) ) |
| 22 | 9 5 20 21 | syl3anc | |- ( ph -> ( N ` ( X ( +g ` G ) ( N ` Y ) ) ) = ( ( N ` ( N ` Y ) ) ( +g ` G ) ( N ` X ) ) ) |
| 23 | 18 22 | eqtr4d | |- ( ph -> ( ( N ` X ) ( +g ` G ) Y ) = ( N ` ( X ( +g ` G ) ( N ` Y ) ) ) ) |
| 24 | 1 7 3 2 | grpsubval | |- ( ( X e. B /\ Y e. B ) -> ( X .- Y ) = ( X ( +g ` G ) ( N ` Y ) ) ) |
| 25 | 5 6 24 | syl2anc | |- ( ph -> ( X .- Y ) = ( X ( +g ` G ) ( N ` Y ) ) ) |
| 26 | 25 | fveq2d | |- ( ph -> ( N ` ( X .- Y ) ) = ( N ` ( X ( +g ` G ) ( N ` Y ) ) ) ) |
| 27 | 23 26 | eqtr4d | |- ( ph -> ( ( N ` X ) ( +g ` G ) Y ) = ( N ` ( X .- Y ) ) ) |
| 28 | 1 2 3 | grpinvsub | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( N ` ( X .- Y ) ) = ( Y .- X ) ) |
| 29 | 9 5 6 28 | syl3anc | |- ( ph -> ( N ` ( X .- Y ) ) = ( Y .- X ) ) |
| 30 | 12 27 29 | 3eqtrd | |- ( ph -> ( ( N ` X ) .- ( N ` Y ) ) = ( Y .- X ) ) |