This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Abelian group subtraction of two inverses. (Contributed by Stefan O'Rear, 24-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablsub2inv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| ablsub2inv.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| ablsub2inv.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | ||
| ablsub2inv.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | ||
| ablsub2inv.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| ablsub2inv.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | ablsub2inv | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) − ( 𝑁 ‘ 𝑌 ) ) = ( 𝑌 − 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablsub2inv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | ablsub2inv.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 3 | ablsub2inv.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 4 | ablsub2inv.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | |
| 5 | ablsub2inv.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | ablsub2inv.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 8 | ablgrp | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) | |
| 9 | 4 8 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 10 | 1 3 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
| 11 | 9 5 10 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
| 12 | 1 7 2 3 9 11 6 | grpsubinv | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) − ( 𝑁 ‘ 𝑌 ) ) = ( ( 𝑁 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑌 ) ) |
| 13 | 1 7 | ablcom | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑌 ) = ( 𝑌 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) ) |
| 14 | 4 11 6 13 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑌 ) = ( 𝑌 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) ) |
| 15 | 1 3 | grpinvinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) = 𝑌 ) |
| 16 | 9 6 15 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) = 𝑌 ) |
| 17 | 16 | oveq1d | ⊢ ( 𝜑 → ( ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) = ( 𝑌 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) ) |
| 18 | 14 17 | eqtr4d | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑌 ) = ( ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) ) |
| 19 | 1 3 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ) |
| 20 | 9 6 19 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ) |
| 21 | 1 7 3 | grpinvadd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑌 ) ) ) = ( ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) ) |
| 22 | 9 5 20 21 | syl3anc | ⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑌 ) ) ) = ( ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) ) |
| 23 | 18 22 | eqtr4d | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑌 ) = ( 𝑁 ‘ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑌 ) ) ) ) |
| 24 | 1 7 3 2 | grpsubval | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑌 ) ) ) |
| 25 | 5 6 24 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑌 ) ) ) |
| 26 | 25 | fveq2d | ⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑋 − 𝑌 ) ) = ( 𝑁 ‘ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑌 ) ) ) ) |
| 27 | 23 26 | eqtr4d | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑌 ) = ( 𝑁 ‘ ( 𝑋 − 𝑌 ) ) ) |
| 28 | 1 2 3 | grpinvsub | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑋 − 𝑌 ) ) = ( 𝑌 − 𝑋 ) ) |
| 29 | 9 5 6 28 | syl3anc | ⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑋 − 𝑌 ) ) = ( 𝑌 − 𝑋 ) ) |
| 30 | 12 27 29 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) − ( 𝑁 ‘ 𝑌 ) ) = ( 𝑌 − 𝑋 ) ) |