This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between Abelian group subtraction and addition. (Contributed by NM, 31-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablsubadd.b | |- B = ( Base ` G ) |
|
| ablsubadd.p | |- .+ = ( +g ` G ) |
||
| ablsubadd.m | |- .- = ( -g ` G ) |
||
| Assertion | ablsubadd | |- ( ( G e. Abel /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .- Y ) = Z <-> ( Y .+ Z ) = X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablsubadd.b | |- B = ( Base ` G ) |
|
| 2 | ablsubadd.p | |- .+ = ( +g ` G ) |
|
| 3 | ablsubadd.m | |- .- = ( -g ` G ) |
|
| 4 | ablgrp | |- ( G e. Abel -> G e. Grp ) |
|
| 5 | 1 2 3 | grpsubadd | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .- Y ) = Z <-> ( Z .+ Y ) = X ) ) |
| 6 | 4 5 | sylan | |- ( ( G e. Abel /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .- Y ) = Z <-> ( Z .+ Y ) = X ) ) |
| 7 | 1 2 | ablcom | |- ( ( G e. Abel /\ Y e. B /\ Z e. B ) -> ( Y .+ Z ) = ( Z .+ Y ) ) |
| 8 | 7 | 3adant3r1 | |- ( ( G e. Abel /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Y .+ Z ) = ( Z .+ Y ) ) |
| 9 | 8 | eqeq1d | |- ( ( G e. Abel /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( Y .+ Z ) = X <-> ( Z .+ Y ) = X ) ) |
| 10 | 6 9 | bitr4d | |- ( ( G e. Abel /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .- Y ) = Z <-> ( Y .+ Z ) = X ) ) |