This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction of an inverse. (Contributed by NM, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubinv.b | |- B = ( Base ` G ) |
|
| grpsubinv.p | |- .+ = ( +g ` G ) |
||
| grpsubinv.m | |- .- = ( -g ` G ) |
||
| grpsubinv.n | |- N = ( invg ` G ) |
||
| grpsubinv.g | |- ( ph -> G e. Grp ) |
||
| grpsubinv.x | |- ( ph -> X e. B ) |
||
| grpsubinv.y | |- ( ph -> Y e. B ) |
||
| Assertion | grpsubinv | |- ( ph -> ( X .- ( N ` Y ) ) = ( X .+ Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubinv.b | |- B = ( Base ` G ) |
|
| 2 | grpsubinv.p | |- .+ = ( +g ` G ) |
|
| 3 | grpsubinv.m | |- .- = ( -g ` G ) |
|
| 4 | grpsubinv.n | |- N = ( invg ` G ) |
|
| 5 | grpsubinv.g | |- ( ph -> G e. Grp ) |
|
| 6 | grpsubinv.x | |- ( ph -> X e. B ) |
|
| 7 | grpsubinv.y | |- ( ph -> Y e. B ) |
|
| 8 | 1 4 | grpinvcl | |- ( ( G e. Grp /\ Y e. B ) -> ( N ` Y ) e. B ) |
| 9 | 5 7 8 | syl2anc | |- ( ph -> ( N ` Y ) e. B ) |
| 10 | 1 2 4 3 | grpsubval | |- ( ( X e. B /\ ( N ` Y ) e. B ) -> ( X .- ( N ` Y ) ) = ( X .+ ( N ` ( N ` Y ) ) ) ) |
| 11 | 6 9 10 | syl2anc | |- ( ph -> ( X .- ( N ` Y ) ) = ( X .+ ( N ` ( N ` Y ) ) ) ) |
| 12 | 1 4 | grpinvinv | |- ( ( G e. Grp /\ Y e. B ) -> ( N ` ( N ` Y ) ) = Y ) |
| 13 | 5 7 12 | syl2anc | |- ( ph -> ( N ` ( N ` Y ) ) = Y ) |
| 14 | 13 | oveq2d | |- ( ph -> ( X .+ ( N ` ( N ` Y ) ) ) = ( X .+ Y ) ) |
| 15 | 11 14 | eqtrd | |- ( ph -> ( X .- ( N ` Y ) ) = ( X .+ Y ) ) |