This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inverse of a group subtraction. (Contributed by NM, 9-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubcl.b | |- B = ( Base ` G ) |
|
| grpsubcl.m | |- .- = ( -g ` G ) |
||
| grpinvsub.n | |- N = ( invg ` G ) |
||
| Assertion | grpinvsub | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( N ` ( X .- Y ) ) = ( Y .- X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubcl.b | |- B = ( Base ` G ) |
|
| 2 | grpsubcl.m | |- .- = ( -g ` G ) |
|
| 3 | grpinvsub.n | |- N = ( invg ` G ) |
|
| 4 | 1 3 | grpinvcl | |- ( ( G e. Grp /\ Y e. B ) -> ( N ` Y ) e. B ) |
| 5 | 4 | 3adant2 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( N ` Y ) e. B ) |
| 6 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 7 | 1 6 3 | grpinvadd | |- ( ( G e. Grp /\ X e. B /\ ( N ` Y ) e. B ) -> ( N ` ( X ( +g ` G ) ( N ` Y ) ) ) = ( ( N ` ( N ` Y ) ) ( +g ` G ) ( N ` X ) ) ) |
| 8 | 5 7 | syld3an3 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( N ` ( X ( +g ` G ) ( N ` Y ) ) ) = ( ( N ` ( N ` Y ) ) ( +g ` G ) ( N ` X ) ) ) |
| 9 | 1 3 | grpinvinv | |- ( ( G e. Grp /\ Y e. B ) -> ( N ` ( N ` Y ) ) = Y ) |
| 10 | 9 | 3adant2 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( N ` ( N ` Y ) ) = Y ) |
| 11 | 10 | oveq1d | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( N ` ( N ` Y ) ) ( +g ` G ) ( N ` X ) ) = ( Y ( +g ` G ) ( N ` X ) ) ) |
| 12 | 8 11 | eqtrd | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( N ` ( X ( +g ` G ) ( N ` Y ) ) ) = ( Y ( +g ` G ) ( N ` X ) ) ) |
| 13 | 1 6 3 2 | grpsubval | |- ( ( X e. B /\ Y e. B ) -> ( X .- Y ) = ( X ( +g ` G ) ( N ` Y ) ) ) |
| 14 | 13 | 3adant1 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( X .- Y ) = ( X ( +g ` G ) ( N ` Y ) ) ) |
| 15 | 14 | fveq2d | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( N ` ( X .- Y ) ) = ( N ` ( X ( +g ` G ) ( N ` Y ) ) ) ) |
| 16 | 1 6 3 2 | grpsubval | |- ( ( Y e. B /\ X e. B ) -> ( Y .- X ) = ( Y ( +g ` G ) ( N ` X ) ) ) |
| 17 | 16 | ancoms | |- ( ( X e. B /\ Y e. B ) -> ( Y .- X ) = ( Y ( +g ` G ) ( N ` X ) ) ) |
| 18 | 17 | 3adant1 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( Y .- X ) = ( Y ( +g ` G ) ( N ` X ) ) ) |
| 19 | 12 15 18 | 3eqtr4d | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( N ` ( X .- Y ) ) = ( Y .- X ) ) |