This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A decimal number is divisible by three iff the sum of its three "digits" is divisible by three. The term "digits" in its narrow sense is only correct if A , B and C actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers A , B and C . (Contributed by AV, 14-Jun-2021) (Revised by AV, 1-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3dvdsdec.a | |- A e. NN0 |
|
| 3dvdsdec.b | |- B e. NN0 |
||
| 3dvds2dec.c | |- C e. NN0 |
||
| Assertion | 3dvds2dec | |- ( 3 || ; ; A B C <-> 3 || ( ( A + B ) + C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3dvdsdec.a | |- A e. NN0 |
|
| 2 | 3dvdsdec.b | |- B e. NN0 |
|
| 3 | 3dvds2dec.c | |- C e. NN0 |
|
| 4 | 1 2 | 3dec | |- ; ; A B C = ( ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) + C ) |
| 5 | sq10e99m1 | |- ( ; 1 0 ^ 2 ) = ( ; 9 9 + 1 ) |
|
| 6 | 5 | oveq1i | |- ( ( ; 1 0 ^ 2 ) x. A ) = ( ( ; 9 9 + 1 ) x. A ) |
| 7 | 9nn0 | |- 9 e. NN0 |
|
| 8 | 7 7 | deccl | |- ; 9 9 e. NN0 |
| 9 | 8 | nn0cni | |- ; 9 9 e. CC |
| 10 | ax-1cn | |- 1 e. CC |
|
| 11 | 1 | nn0cni | |- A e. CC |
| 12 | 9 10 11 | adddiri | |- ( ( ; 9 9 + 1 ) x. A ) = ( ( ; 9 9 x. A ) + ( 1 x. A ) ) |
| 13 | 11 | mullidi | |- ( 1 x. A ) = A |
| 14 | 13 | oveq2i | |- ( ( ; 9 9 x. A ) + ( 1 x. A ) ) = ( ( ; 9 9 x. A ) + A ) |
| 15 | 6 12 14 | 3eqtri | |- ( ( ; 1 0 ^ 2 ) x. A ) = ( ( ; 9 9 x. A ) + A ) |
| 16 | 9p1e10 | |- ( 9 + 1 ) = ; 1 0 |
|
| 17 | 16 | eqcomi | |- ; 1 0 = ( 9 + 1 ) |
| 18 | 17 | oveq1i | |- ( ; 1 0 x. B ) = ( ( 9 + 1 ) x. B ) |
| 19 | 9cn | |- 9 e. CC |
|
| 20 | 2 | nn0cni | |- B e. CC |
| 21 | 19 10 20 | adddiri | |- ( ( 9 + 1 ) x. B ) = ( ( 9 x. B ) + ( 1 x. B ) ) |
| 22 | 20 | mullidi | |- ( 1 x. B ) = B |
| 23 | 22 | oveq2i | |- ( ( 9 x. B ) + ( 1 x. B ) ) = ( ( 9 x. B ) + B ) |
| 24 | 18 21 23 | 3eqtri | |- ( ; 1 0 x. B ) = ( ( 9 x. B ) + B ) |
| 25 | 15 24 | oveq12i | |- ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) = ( ( ( ; 9 9 x. A ) + A ) + ( ( 9 x. B ) + B ) ) |
| 26 | 25 | oveq1i | |- ( ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) + C ) = ( ( ( ( ; 9 9 x. A ) + A ) + ( ( 9 x. B ) + B ) ) + C ) |
| 27 | 9 11 | mulcli | |- ( ; 9 9 x. A ) e. CC |
| 28 | 19 20 | mulcli | |- ( 9 x. B ) e. CC |
| 29 | add4 | |- ( ( ( ( ; 9 9 x. A ) e. CC /\ A e. CC ) /\ ( ( 9 x. B ) e. CC /\ B e. CC ) ) -> ( ( ( ; 9 9 x. A ) + A ) + ( ( 9 x. B ) + B ) ) = ( ( ( ; 9 9 x. A ) + ( 9 x. B ) ) + ( A + B ) ) ) |
|
| 30 | 29 | oveq1d | |- ( ( ( ( ; 9 9 x. A ) e. CC /\ A e. CC ) /\ ( ( 9 x. B ) e. CC /\ B e. CC ) ) -> ( ( ( ( ; 9 9 x. A ) + A ) + ( ( 9 x. B ) + B ) ) + C ) = ( ( ( ( ; 9 9 x. A ) + ( 9 x. B ) ) + ( A + B ) ) + C ) ) |
| 31 | 27 11 28 20 30 | mp4an | |- ( ( ( ( ; 9 9 x. A ) + A ) + ( ( 9 x. B ) + B ) ) + C ) = ( ( ( ( ; 9 9 x. A ) + ( 9 x. B ) ) + ( A + B ) ) + C ) |
| 32 | 27 28 | addcli | |- ( ( ; 9 9 x. A ) + ( 9 x. B ) ) e. CC |
| 33 | 11 20 | addcli | |- ( A + B ) e. CC |
| 34 | 3 | nn0cni | |- C e. CC |
| 35 | 32 33 34 | addassi | |- ( ( ( ( ; 9 9 x. A ) + ( 9 x. B ) ) + ( A + B ) ) + C ) = ( ( ( ; 9 9 x. A ) + ( 9 x. B ) ) + ( ( A + B ) + C ) ) |
| 36 | 9t11e99 | |- ( 9 x. ; 1 1 ) = ; 9 9 |
|
| 37 | 36 | eqcomi | |- ; 9 9 = ( 9 x. ; 1 1 ) |
| 38 | 37 | oveq1i | |- ( ; 9 9 x. A ) = ( ( 9 x. ; 1 1 ) x. A ) |
| 39 | 1nn0 | |- 1 e. NN0 |
|
| 40 | 39 39 | deccl | |- ; 1 1 e. NN0 |
| 41 | 40 | nn0cni | |- ; 1 1 e. CC |
| 42 | 19 41 11 | mulassi | |- ( ( 9 x. ; 1 1 ) x. A ) = ( 9 x. ( ; 1 1 x. A ) ) |
| 43 | 38 42 | eqtri | |- ( ; 9 9 x. A ) = ( 9 x. ( ; 1 1 x. A ) ) |
| 44 | 43 | oveq1i | |- ( ( ; 9 9 x. A ) + ( 9 x. B ) ) = ( ( 9 x. ( ; 1 1 x. A ) ) + ( 9 x. B ) ) |
| 45 | 41 11 | mulcli | |- ( ; 1 1 x. A ) e. CC |
| 46 | 19 45 20 | adddii | |- ( 9 x. ( ( ; 1 1 x. A ) + B ) ) = ( ( 9 x. ( ; 1 1 x. A ) ) + ( 9 x. B ) ) |
| 47 | 46 | eqcomi | |- ( ( 9 x. ( ; 1 1 x. A ) ) + ( 9 x. B ) ) = ( 9 x. ( ( ; 1 1 x. A ) + B ) ) |
| 48 | 3t3e9 | |- ( 3 x. 3 ) = 9 |
|
| 49 | 48 | eqcomi | |- 9 = ( 3 x. 3 ) |
| 50 | 49 | oveq1i | |- ( 9 x. ( ( ; 1 1 x. A ) + B ) ) = ( ( 3 x. 3 ) x. ( ( ; 1 1 x. A ) + B ) ) |
| 51 | 3cn | |- 3 e. CC |
|
| 52 | 45 20 | addcli | |- ( ( ; 1 1 x. A ) + B ) e. CC |
| 53 | 51 51 52 | mulassi | |- ( ( 3 x. 3 ) x. ( ( ; 1 1 x. A ) + B ) ) = ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) |
| 54 | 50 53 | eqtri | |- ( 9 x. ( ( ; 1 1 x. A ) + B ) ) = ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) |
| 55 | 44 47 54 | 3eqtri | |- ( ( ; 9 9 x. A ) + ( 9 x. B ) ) = ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) |
| 56 | 55 | oveq1i | |- ( ( ( ; 9 9 x. A ) + ( 9 x. B ) ) + ( ( A + B ) + C ) ) = ( ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) + ( ( A + B ) + C ) ) |
| 57 | 31 35 56 | 3eqtri | |- ( ( ( ( ; 9 9 x. A ) + A ) + ( ( 9 x. B ) + B ) ) + C ) = ( ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) + ( ( A + B ) + C ) ) |
| 58 | 4 26 57 | 3eqtri | |- ; ; A B C = ( ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) + ( ( A + B ) + C ) ) |
| 59 | 58 | breq2i | |- ( 3 || ; ; A B C <-> 3 || ( ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) + ( ( A + B ) + C ) ) ) |
| 60 | 3z | |- 3 e. ZZ |
|
| 61 | 1 | nn0zi | |- A e. ZZ |
| 62 | 2 | nn0zi | |- B e. ZZ |
| 63 | zaddcl | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A + B ) e. ZZ ) |
|
| 64 | 61 62 63 | mp2an | |- ( A + B ) e. ZZ |
| 65 | 3 | nn0zi | |- C e. ZZ |
| 66 | zaddcl | |- ( ( ( A + B ) e. ZZ /\ C e. ZZ ) -> ( ( A + B ) + C ) e. ZZ ) |
|
| 67 | 64 65 66 | mp2an | |- ( ( A + B ) + C ) e. ZZ |
| 68 | 40 | nn0zi | |- ; 1 1 e. ZZ |
| 69 | zmulcl | |- ( ( ; 1 1 e. ZZ /\ A e. ZZ ) -> ( ; 1 1 x. A ) e. ZZ ) |
|
| 70 | 68 61 69 | mp2an | |- ( ; 1 1 x. A ) e. ZZ |
| 71 | zaddcl | |- ( ( ( ; 1 1 x. A ) e. ZZ /\ B e. ZZ ) -> ( ( ; 1 1 x. A ) + B ) e. ZZ ) |
|
| 72 | 70 62 71 | mp2an | |- ( ( ; 1 1 x. A ) + B ) e. ZZ |
| 73 | zmulcl | |- ( ( 3 e. ZZ /\ ( ( ; 1 1 x. A ) + B ) e. ZZ ) -> ( 3 x. ( ( ; 1 1 x. A ) + B ) ) e. ZZ ) |
|
| 74 | 60 72 73 | mp2an | |- ( 3 x. ( ( ; 1 1 x. A ) + B ) ) e. ZZ |
| 75 | zmulcl | |- ( ( 3 e. ZZ /\ ( 3 x. ( ( ; 1 1 x. A ) + B ) ) e. ZZ ) -> ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) e. ZZ ) |
|
| 76 | 60 74 75 | mp2an | |- ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) e. ZZ |
| 77 | dvdsmul1 | |- ( ( 3 e. ZZ /\ ( 3 x. ( ( ; 1 1 x. A ) + B ) ) e. ZZ ) -> 3 || ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) ) |
|
| 78 | 60 74 77 | mp2an | |- 3 || ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) |
| 79 | 76 78 | pm3.2i | |- ( ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) e. ZZ /\ 3 || ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) ) |
| 80 | dvdsadd2b | |- ( ( 3 e. ZZ /\ ( ( A + B ) + C ) e. ZZ /\ ( ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) e. ZZ /\ 3 || ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) ) ) -> ( 3 || ( ( A + B ) + C ) <-> 3 || ( ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) + ( ( A + B ) + C ) ) ) ) |
|
| 81 | 60 67 79 80 | mp3an | |- ( 3 || ( ( A + B ) + C ) <-> 3 || ( ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) + ( ( A + B ) + C ) ) ) |
| 82 | 59 81 | bitr4i | |- ( 3 || ; ; A B C <-> 3 || ( ( A + B ) + C ) ) |