This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A "decimal constructor" which is used to build up "decimal integers" or "numeric terms" in base 10 with 3 "digits". (Contributed by AV, 14-Jun-2021) (Revised by AV, 1-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3dec.a | |- A e. NN0 |
|
| 3dec.b | |- B e. NN0 |
||
| Assertion | 3dec | |- ; ; A B C = ( ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) + C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3dec.a | |- A e. NN0 |
|
| 2 | 3dec.b | |- B e. NN0 |
|
| 3 | dfdec10 | |- ; ; A B C = ( ( ; 1 0 x. ; A B ) + C ) |
|
| 4 | dfdec10 | |- ; A B = ( ( ; 1 0 x. A ) + B ) |
|
| 5 | 4 | oveq2i | |- ( ; 1 0 x. ; A B ) = ( ; 1 0 x. ( ( ; 1 0 x. A ) + B ) ) |
| 6 | 10nn | |- ; 1 0 e. NN |
|
| 7 | 6 | nncni | |- ; 1 0 e. CC |
| 8 | 1 | nn0cni | |- A e. CC |
| 9 | 7 8 | mulcli | |- ( ; 1 0 x. A ) e. CC |
| 10 | 2 | nn0cni | |- B e. CC |
| 11 | 7 9 10 | adddii | |- ( ; 1 0 x. ( ( ; 1 0 x. A ) + B ) ) = ( ( ; 1 0 x. ( ; 1 0 x. A ) ) + ( ; 1 0 x. B ) ) |
| 12 | 5 11 | eqtri | |- ( ; 1 0 x. ; A B ) = ( ( ; 1 0 x. ( ; 1 0 x. A ) ) + ( ; 1 0 x. B ) ) |
| 13 | 7 7 8 | mulassi | |- ( ( ; 1 0 x. ; 1 0 ) x. A ) = ( ; 1 0 x. ( ; 1 0 x. A ) ) |
| 14 | 13 | eqcomi | |- ( ; 1 0 x. ( ; 1 0 x. A ) ) = ( ( ; 1 0 x. ; 1 0 ) x. A ) |
| 15 | 7 | sqvali | |- ( ; 1 0 ^ 2 ) = ( ; 1 0 x. ; 1 0 ) |
| 16 | 15 | eqcomi | |- ( ; 1 0 x. ; 1 0 ) = ( ; 1 0 ^ 2 ) |
| 17 | 16 | oveq1i | |- ( ( ; 1 0 x. ; 1 0 ) x. A ) = ( ( ; 1 0 ^ 2 ) x. A ) |
| 18 | 14 17 | eqtri | |- ( ; 1 0 x. ( ; 1 0 x. A ) ) = ( ( ; 1 0 ^ 2 ) x. A ) |
| 19 | 18 | oveq1i | |- ( ( ; 1 0 x. ( ; 1 0 x. A ) ) + ( ; 1 0 x. B ) ) = ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) |
| 20 | 12 19 | eqtri | |- ( ; 1 0 x. ; A B ) = ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) |
| 21 | 20 | oveq1i | |- ( ( ; 1 0 x. ; A B ) + C ) = ( ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) + C ) |
| 22 | 3 21 | eqtri | |- ; ; A B C = ( ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) + C ) |