This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adding a multiple of the base does not affect divisibility. (Contributed by Stefan O'Rear, 23-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsadd2b | |- ( ( A e. ZZ /\ B e. ZZ /\ ( C e. ZZ /\ A || C ) ) -> ( A || B <-> A || ( C + B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 | |- ( ( ( A e. ZZ /\ B e. ZZ /\ ( C e. ZZ /\ A || C ) ) /\ A || B ) -> A e. ZZ ) |
|
| 2 | simpl3l | |- ( ( ( A e. ZZ /\ B e. ZZ /\ ( C e. ZZ /\ A || C ) ) /\ A || B ) -> C e. ZZ ) |
|
| 3 | simpl2 | |- ( ( ( A e. ZZ /\ B e. ZZ /\ ( C e. ZZ /\ A || C ) ) /\ A || B ) -> B e. ZZ ) |
|
| 4 | simpl3r | |- ( ( ( A e. ZZ /\ B e. ZZ /\ ( C e. ZZ /\ A || C ) ) /\ A || B ) -> A || C ) |
|
| 5 | simpr | |- ( ( ( A e. ZZ /\ B e. ZZ /\ ( C e. ZZ /\ A || C ) ) /\ A || B ) -> A || B ) |
|
| 6 | 1 2 3 4 5 | dvds2addd | |- ( ( ( A e. ZZ /\ B e. ZZ /\ ( C e. ZZ /\ A || C ) ) /\ A || B ) -> A || ( C + B ) ) |
| 7 | simpl1 | |- ( ( ( A e. ZZ /\ B e. ZZ /\ ( C e. ZZ /\ A || C ) ) /\ A || ( C + B ) ) -> A e. ZZ ) |
|
| 8 | simp3l | |- ( ( A e. ZZ /\ B e. ZZ /\ ( C e. ZZ /\ A || C ) ) -> C e. ZZ ) |
|
| 9 | simp2 | |- ( ( A e. ZZ /\ B e. ZZ /\ ( C e. ZZ /\ A || C ) ) -> B e. ZZ ) |
|
| 10 | zaddcl | |- ( ( C e. ZZ /\ B e. ZZ ) -> ( C + B ) e. ZZ ) |
|
| 11 | 8 9 10 | syl2anc | |- ( ( A e. ZZ /\ B e. ZZ /\ ( C e. ZZ /\ A || C ) ) -> ( C + B ) e. ZZ ) |
| 12 | 11 | adantr | |- ( ( ( A e. ZZ /\ B e. ZZ /\ ( C e. ZZ /\ A || C ) ) /\ A || ( C + B ) ) -> ( C + B ) e. ZZ ) |
| 13 | 8 | znegcld | |- ( ( A e. ZZ /\ B e. ZZ /\ ( C e. ZZ /\ A || C ) ) -> -u C e. ZZ ) |
| 14 | 13 | adantr | |- ( ( ( A e. ZZ /\ B e. ZZ /\ ( C e. ZZ /\ A || C ) ) /\ A || ( C + B ) ) -> -u C e. ZZ ) |
| 15 | simpr | |- ( ( ( A e. ZZ /\ B e. ZZ /\ ( C e. ZZ /\ A || C ) ) /\ A || ( C + B ) ) -> A || ( C + B ) ) |
|
| 16 | simpl3r | |- ( ( ( A e. ZZ /\ B e. ZZ /\ ( C e. ZZ /\ A || C ) ) /\ A || ( C + B ) ) -> A || C ) |
|
| 17 | simpl3l | |- ( ( ( A e. ZZ /\ B e. ZZ /\ ( C e. ZZ /\ A || C ) ) /\ A || ( C + B ) ) -> C e. ZZ ) |
|
| 18 | dvdsnegb | |- ( ( A e. ZZ /\ C e. ZZ ) -> ( A || C <-> A || -u C ) ) |
|
| 19 | 7 17 18 | syl2anc | |- ( ( ( A e. ZZ /\ B e. ZZ /\ ( C e. ZZ /\ A || C ) ) /\ A || ( C + B ) ) -> ( A || C <-> A || -u C ) ) |
| 20 | 16 19 | mpbid | |- ( ( ( A e. ZZ /\ B e. ZZ /\ ( C e. ZZ /\ A || C ) ) /\ A || ( C + B ) ) -> A || -u C ) |
| 21 | 7 12 14 15 20 | dvds2addd | |- ( ( ( A e. ZZ /\ B e. ZZ /\ ( C e. ZZ /\ A || C ) ) /\ A || ( C + B ) ) -> A || ( ( C + B ) + -u C ) ) |
| 22 | simpl2 | |- ( ( ( A e. ZZ /\ B e. ZZ /\ ( C e. ZZ /\ A || C ) ) /\ A || ( C + B ) ) -> B e. ZZ ) |
|
| 23 | 10 | ancoms | |- ( ( B e. ZZ /\ C e. ZZ ) -> ( C + B ) e. ZZ ) |
| 24 | 23 | zcnd | |- ( ( B e. ZZ /\ C e. ZZ ) -> ( C + B ) e. CC ) |
| 25 | zcn | |- ( C e. ZZ -> C e. CC ) |
|
| 26 | 25 | adantl | |- ( ( B e. ZZ /\ C e. ZZ ) -> C e. CC ) |
| 27 | 24 26 | negsubd | |- ( ( B e. ZZ /\ C e. ZZ ) -> ( ( C + B ) + -u C ) = ( ( C + B ) - C ) ) |
| 28 | zcn | |- ( B e. ZZ -> B e. CC ) |
|
| 29 | 28 | adantr | |- ( ( B e. ZZ /\ C e. ZZ ) -> B e. CC ) |
| 30 | 26 29 | pncan2d | |- ( ( B e. ZZ /\ C e. ZZ ) -> ( ( C + B ) - C ) = B ) |
| 31 | 27 30 | eqtrd | |- ( ( B e. ZZ /\ C e. ZZ ) -> ( ( C + B ) + -u C ) = B ) |
| 32 | 22 17 31 | syl2anc | |- ( ( ( A e. ZZ /\ B e. ZZ /\ ( C e. ZZ /\ A || C ) ) /\ A || ( C + B ) ) -> ( ( C + B ) + -u C ) = B ) |
| 33 | 21 32 | breqtrd | |- ( ( ( A e. ZZ /\ B e. ZZ /\ ( C e. ZZ /\ A || C ) ) /\ A || ( C + B ) ) -> A || B ) |
| 34 | 6 33 | impbida | |- ( ( A e. ZZ /\ B e. ZZ /\ ( C e. ZZ /\ A || C ) ) -> ( A || B <-> A || ( C + B ) ) ) |