This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite product of integers is divisible by any of its factors being function values. (Contributed by AV, 1-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodfvdvdsd.a | |- ( ph -> A e. Fin ) |
|
| fprodfvdvdsd.b | |- ( ph -> A C_ B ) |
||
| fprodfvdvdsd.f | |- ( ph -> F : B --> ZZ ) |
||
| Assertion | fprodfvdvdsd | |- ( ph -> A. x e. A ( F ` x ) || prod_ k e. A ( F ` k ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodfvdvdsd.a | |- ( ph -> A e. Fin ) |
|
| 2 | fprodfvdvdsd.b | |- ( ph -> A C_ B ) |
|
| 3 | fprodfvdvdsd.f | |- ( ph -> F : B --> ZZ ) |
|
| 4 | 1 | adantr | |- ( ( ph /\ x e. A ) -> A e. Fin ) |
| 5 | diffi | |- ( A e. Fin -> ( A \ { x } ) e. Fin ) |
|
| 6 | 4 5 | syl | |- ( ( ph /\ x e. A ) -> ( A \ { x } ) e. Fin ) |
| 7 | 3 | adantr | |- ( ( ph /\ k e. ( A \ { x } ) ) -> F : B --> ZZ ) |
| 8 | 2 | ssdifssd | |- ( ph -> ( A \ { x } ) C_ B ) |
| 9 | 8 | sselda | |- ( ( ph /\ k e. ( A \ { x } ) ) -> k e. B ) |
| 10 | 7 9 | ffvelcdmd | |- ( ( ph /\ k e. ( A \ { x } ) ) -> ( F ` k ) e. ZZ ) |
| 11 | 10 | adantlr | |- ( ( ( ph /\ x e. A ) /\ k e. ( A \ { x } ) ) -> ( F ` k ) e. ZZ ) |
| 12 | 6 11 | fprodzcl | |- ( ( ph /\ x e. A ) -> prod_ k e. ( A \ { x } ) ( F ` k ) e. ZZ ) |
| 13 | 3 | adantr | |- ( ( ph /\ x e. A ) -> F : B --> ZZ ) |
| 14 | 2 | sselda | |- ( ( ph /\ x e. A ) -> x e. B ) |
| 15 | 13 14 | ffvelcdmd | |- ( ( ph /\ x e. A ) -> ( F ` x ) e. ZZ ) |
| 16 | dvdsmul2 | |- ( ( prod_ k e. ( A \ { x } ) ( F ` k ) e. ZZ /\ ( F ` x ) e. ZZ ) -> ( F ` x ) || ( prod_ k e. ( A \ { x } ) ( F ` k ) x. ( F ` x ) ) ) |
|
| 17 | 12 15 16 | syl2anc | |- ( ( ph /\ x e. A ) -> ( F ` x ) || ( prod_ k e. ( A \ { x } ) ( F ` k ) x. ( F ` x ) ) ) |
| 18 | 17 | ralrimiva | |- ( ph -> A. x e. A ( F ` x ) || ( prod_ k e. ( A \ { x } ) ( F ` k ) x. ( F ` x ) ) ) |
| 19 | neldifsnd | |- ( ( ph /\ x e. A ) -> -. x e. ( A \ { x } ) ) |
|
| 20 | disjsn | |- ( ( ( A \ { x } ) i^i { x } ) = (/) <-> -. x e. ( A \ { x } ) ) |
|
| 21 | 19 20 | sylibr | |- ( ( ph /\ x e. A ) -> ( ( A \ { x } ) i^i { x } ) = (/) ) |
| 22 | difsnid | |- ( x e. A -> ( ( A \ { x } ) u. { x } ) = A ) |
|
| 23 | 22 | eqcomd | |- ( x e. A -> A = ( ( A \ { x } ) u. { x } ) ) |
| 24 | 23 | adantl | |- ( ( ph /\ x e. A ) -> A = ( ( A \ { x } ) u. { x } ) ) |
| 25 | 13 | adantr | |- ( ( ( ph /\ x e. A ) /\ k e. A ) -> F : B --> ZZ ) |
| 26 | 2 | adantr | |- ( ( ph /\ x e. A ) -> A C_ B ) |
| 27 | 26 | sselda | |- ( ( ( ph /\ x e. A ) /\ k e. A ) -> k e. B ) |
| 28 | 25 27 | ffvelcdmd | |- ( ( ( ph /\ x e. A ) /\ k e. A ) -> ( F ` k ) e. ZZ ) |
| 29 | 28 | zcnd | |- ( ( ( ph /\ x e. A ) /\ k e. A ) -> ( F ` k ) e. CC ) |
| 30 | 21 24 4 29 | fprodsplit | |- ( ( ph /\ x e. A ) -> prod_ k e. A ( F ` k ) = ( prod_ k e. ( A \ { x } ) ( F ` k ) x. prod_ k e. { x } ( F ` k ) ) ) |
| 31 | simpr | |- ( ( ph /\ x e. A ) -> x e. A ) |
|
| 32 | 15 | zcnd | |- ( ( ph /\ x e. A ) -> ( F ` x ) e. CC ) |
| 33 | fveq2 | |- ( k = x -> ( F ` k ) = ( F ` x ) ) |
|
| 34 | 33 | prodsn | |- ( ( x e. A /\ ( F ` x ) e. CC ) -> prod_ k e. { x } ( F ` k ) = ( F ` x ) ) |
| 35 | 31 32 34 | syl2anc | |- ( ( ph /\ x e. A ) -> prod_ k e. { x } ( F ` k ) = ( F ` x ) ) |
| 36 | 35 | oveq2d | |- ( ( ph /\ x e. A ) -> ( prod_ k e. ( A \ { x } ) ( F ` k ) x. prod_ k e. { x } ( F ` k ) ) = ( prod_ k e. ( A \ { x } ) ( F ` k ) x. ( F ` x ) ) ) |
| 37 | 30 36 | eqtrd | |- ( ( ph /\ x e. A ) -> prod_ k e. A ( F ` k ) = ( prod_ k e. ( A \ { x } ) ( F ` k ) x. ( F ` x ) ) ) |
| 38 | 37 | breq2d | |- ( ( ph /\ x e. A ) -> ( ( F ` x ) || prod_ k e. A ( F ` k ) <-> ( F ` x ) || ( prod_ k e. ( A \ { x } ) ( F ` k ) x. ( F ` x ) ) ) ) |
| 39 | 38 | ralbidva | |- ( ph -> ( A. x e. A ( F ` x ) || prod_ k e. A ( F ` k ) <-> A. x e. A ( F ` x ) || ( prod_ k e. ( A \ { x } ) ( F ` k ) x. ( F ` x ) ) ) ) |
| 40 | 18 39 | mpbird | |- ( ph -> A. x e. A ( F ` x ) || prod_ k e. A ( F ` k ) ) |