This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element is less than or equal to a meet iff the element is less than or equal to each argument of the meet. (Contributed by NM, 21-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latmle.b | |- B = ( Base ` K ) |
|
| latmle.l | |- .<_ = ( le ` K ) |
||
| latmle.m | |- ./\ = ( meet ` K ) |
||
| Assertion | latlem12 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .<_ Y /\ X .<_ Z ) <-> X .<_ ( Y ./\ Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latmle.b | |- B = ( Base ` K ) |
|
| 2 | latmle.l | |- .<_ = ( le ` K ) |
|
| 3 | latmle.m | |- ./\ = ( meet ` K ) |
|
| 4 | latpos | |- ( K e. Lat -> K e. Poset ) |
|
| 5 | 4 | adantr | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> K e. Poset ) |
| 6 | simpr2 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Y e. B ) |
|
| 7 | simpr3 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Z e. B ) |
|
| 8 | simpr1 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> X e. B ) |
|
| 9 | eqid | |- ( join ` K ) = ( join ` K ) |
|
| 10 | simpl | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> K e. Lat ) |
|
| 11 | 1 9 3 10 6 7 | latcl2 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( <. Y , Z >. e. dom ( join ` K ) /\ <. Y , Z >. e. dom ./\ ) ) |
| 12 | 11 | simprd | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> <. Y , Z >. e. dom ./\ ) |
| 13 | 1 2 3 5 6 7 8 12 | meetle | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .<_ Y /\ X .<_ Z ) <-> X .<_ ( Y ./\ Z ) ) ) |