This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two atoms are comparable, they are equal. ( atsseq analog.) (Contributed by NM, 13-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atcmp.l | |- .<_ = ( le ` K ) |
|
| atcmp.a | |- A = ( Atoms ` K ) |
||
| Assertion | atcmp | |- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( P .<_ Q <-> P = Q ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atcmp.l | |- .<_ = ( le ` K ) |
|
| 2 | atcmp.a | |- A = ( Atoms ` K ) |
|
| 3 | atlpos | |- ( K e. AtLat -> K e. Poset ) |
|
| 4 | 3 | 3ad2ant1 | |- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> K e. Poset ) |
| 5 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 6 | 5 2 | atbase | |- ( P e. A -> P e. ( Base ` K ) ) |
| 7 | 6 | 3ad2ant2 | |- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> P e. ( Base ` K ) ) |
| 8 | 5 2 | atbase | |- ( Q e. A -> Q e. ( Base ` K ) ) |
| 9 | 8 | 3ad2ant3 | |- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> Q e. ( Base ` K ) ) |
| 10 | eqid | |- ( 0. ` K ) = ( 0. ` K ) |
|
| 11 | 5 10 | atl0cl | |- ( K e. AtLat -> ( 0. ` K ) e. ( Base ` K ) ) |
| 12 | 11 | 3ad2ant1 | |- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( 0. ` K ) e. ( Base ` K ) ) |
| 13 | eqid | |- ( |
|
| 14 | 10 13 2 | atcvr0 | |- ( ( K e. AtLat /\ P e. A ) -> ( 0. ` K ) ( |
| 15 | 14 | 3adant3 | |- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( 0. ` K ) ( |
| 16 | 10 13 2 | atcvr0 | |- ( ( K e. AtLat /\ Q e. A ) -> ( 0. ` K ) ( |
| 17 | 16 | 3adant2 | |- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( 0. ` K ) ( |
| 18 | 5 1 13 | cvrcmp | |- ( ( K e. Poset /\ ( P e. ( Base ` K ) /\ Q e. ( Base ` K ) /\ ( 0. ` K ) e. ( Base ` K ) ) /\ ( ( 0. ` K ) ( |
| 19 | 4 7 9 12 15 17 18 | syl132anc | |- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( P .<_ Q <-> P = Q ) ) |