This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertex degree of a one-edge graph, case 2: an edge from the given vertex to some other vertex contributes one to the vertex's degree. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 22-Dec-2017) (Revised by AV, 21-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1egrvtxdg1.v | |- ( ph -> ( Vtx ` G ) = V ) |
|
| 1egrvtxdg1.a | |- ( ph -> A e. X ) |
||
| 1egrvtxdg1.b | |- ( ph -> B e. V ) |
||
| 1egrvtxdg1.c | |- ( ph -> C e. V ) |
||
| 1egrvtxdg1.n | |- ( ph -> B =/= C ) |
||
| 1egrvtxdg1.i | |- ( ph -> ( iEdg ` G ) = { <. A , { B , C } >. } ) |
||
| Assertion | 1egrvtxdg1 | |- ( ph -> ( ( VtxDeg ` G ) ` B ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1egrvtxdg1.v | |- ( ph -> ( Vtx ` G ) = V ) |
|
| 2 | 1egrvtxdg1.a | |- ( ph -> A e. X ) |
|
| 3 | 1egrvtxdg1.b | |- ( ph -> B e. V ) |
|
| 4 | 1egrvtxdg1.c | |- ( ph -> C e. V ) |
|
| 5 | 1egrvtxdg1.n | |- ( ph -> B =/= C ) |
|
| 6 | 1egrvtxdg1.i | |- ( ph -> ( iEdg ` G ) = { <. A , { B , C } >. } ) |
|
| 7 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 8 | 3 1 | eleqtrrd | |- ( ph -> B e. ( Vtx ` G ) ) |
| 9 | 4 1 | eleqtrrd | |- ( ph -> C e. ( Vtx ` G ) ) |
| 10 | 7 2 8 9 6 5 | usgr1e | |- ( ph -> G e. USGraph ) |
| 11 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 12 | eqid | |- dom ( iEdg ` G ) = dom ( iEdg ` G ) |
|
| 13 | eqid | |- ( VtxDeg ` G ) = ( VtxDeg ` G ) |
|
| 14 | 7 11 12 13 | vtxdusgrval | |- ( ( G e. USGraph /\ B e. ( Vtx ` G ) ) -> ( ( VtxDeg ` G ) ` B ) = ( # ` { x e. dom ( iEdg ` G ) | B e. ( ( iEdg ` G ) ` x ) } ) ) |
| 15 | 10 8 14 | syl2anc | |- ( ph -> ( ( VtxDeg ` G ) ` B ) = ( # ` { x e. dom ( iEdg ` G ) | B e. ( ( iEdg ` G ) ` x ) } ) ) |
| 16 | dmeq | |- ( ( iEdg ` G ) = { <. A , { B , C } >. } -> dom ( iEdg ` G ) = dom { <. A , { B , C } >. } ) |
|
| 17 | 16 | adantl | |- ( ( ph /\ ( iEdg ` G ) = { <. A , { B , C } >. } ) -> dom ( iEdg ` G ) = dom { <. A , { B , C } >. } ) |
| 18 | prex | |- { B , C } e. _V |
|
| 19 | dmsnopg | |- ( { B , C } e. _V -> dom { <. A , { B , C } >. } = { A } ) |
|
| 20 | 18 19 | mp1i | |- ( ( ph /\ ( iEdg ` G ) = { <. A , { B , C } >. } ) -> dom { <. A , { B , C } >. } = { A } ) |
| 21 | 17 20 | eqtrd | |- ( ( ph /\ ( iEdg ` G ) = { <. A , { B , C } >. } ) -> dom ( iEdg ` G ) = { A } ) |
| 22 | fveq1 | |- ( ( iEdg ` G ) = { <. A , { B , C } >. } -> ( ( iEdg ` G ) ` x ) = ( { <. A , { B , C } >. } ` x ) ) |
|
| 23 | 22 | eleq2d | |- ( ( iEdg ` G ) = { <. A , { B , C } >. } -> ( B e. ( ( iEdg ` G ) ` x ) <-> B e. ( { <. A , { B , C } >. } ` x ) ) ) |
| 24 | 23 | adantl | |- ( ( ph /\ ( iEdg ` G ) = { <. A , { B , C } >. } ) -> ( B e. ( ( iEdg ` G ) ` x ) <-> B e. ( { <. A , { B , C } >. } ` x ) ) ) |
| 25 | 21 24 | rabeqbidv | |- ( ( ph /\ ( iEdg ` G ) = { <. A , { B , C } >. } ) -> { x e. dom ( iEdg ` G ) | B e. ( ( iEdg ` G ) ` x ) } = { x e. { A } | B e. ( { <. A , { B , C } >. } ` x ) } ) |
| 26 | 25 | fveq2d | |- ( ( ph /\ ( iEdg ` G ) = { <. A , { B , C } >. } ) -> ( # ` { x e. dom ( iEdg ` G ) | B e. ( ( iEdg ` G ) ` x ) } ) = ( # ` { x e. { A } | B e. ( { <. A , { B , C } >. } ` x ) } ) ) |
| 27 | fveq2 | |- ( x = A -> ( { <. A , { B , C } >. } ` x ) = ( { <. A , { B , C } >. } ` A ) ) |
|
| 28 | 27 | eleq2d | |- ( x = A -> ( B e. ( { <. A , { B , C } >. } ` x ) <-> B e. ( { <. A , { B , C } >. } ` A ) ) ) |
| 29 | 28 | rabsnif | |- { x e. { A } | B e. ( { <. A , { B , C } >. } ` x ) } = if ( B e. ( { <. A , { B , C } >. } ` A ) , { A } , (/) ) |
| 30 | prid1g | |- ( B e. V -> B e. { B , C } ) |
|
| 31 | 3 30 | syl | |- ( ph -> B e. { B , C } ) |
| 32 | fvsng | |- ( ( A e. X /\ { B , C } e. _V ) -> ( { <. A , { B , C } >. } ` A ) = { B , C } ) |
|
| 33 | 2 18 32 | sylancl | |- ( ph -> ( { <. A , { B , C } >. } ` A ) = { B , C } ) |
| 34 | 31 33 | eleqtrrd | |- ( ph -> B e. ( { <. A , { B , C } >. } ` A ) ) |
| 35 | 34 | iftrued | |- ( ph -> if ( B e. ( { <. A , { B , C } >. } ` A ) , { A } , (/) ) = { A } ) |
| 36 | 29 35 | eqtrid | |- ( ph -> { x e. { A } | B e. ( { <. A , { B , C } >. } ` x ) } = { A } ) |
| 37 | 36 | fveq2d | |- ( ph -> ( # ` { x e. { A } | B e. ( { <. A , { B , C } >. } ` x ) } ) = ( # ` { A } ) ) |
| 38 | hashsng | |- ( A e. X -> ( # ` { A } ) = 1 ) |
|
| 39 | 2 38 | syl | |- ( ph -> ( # ` { A } ) = 1 ) |
| 40 | 37 39 | eqtrd | |- ( ph -> ( # ` { x e. { A } | B e. ( { <. A , { B , C } >. } ` x ) } ) = 1 ) |
| 41 | 40 | adantr | |- ( ( ph /\ ( iEdg ` G ) = { <. A , { B , C } >. } ) -> ( # ` { x e. { A } | B e. ( { <. A , { B , C } >. } ` x ) } ) = 1 ) |
| 42 | 26 41 | eqtrd | |- ( ( ph /\ ( iEdg ` G ) = { <. A , { B , C } >. } ) -> ( # ` { x e. dom ( iEdg ` G ) | B e. ( ( iEdg ` G ) ` x ) } ) = 1 ) |
| 43 | 6 42 | mpdan | |- ( ph -> ( # ` { x e. dom ( iEdg ` G ) | B e. ( ( iEdg ` G ) ` x ) } ) = 1 ) |
| 44 | 15 43 | eqtrd | |- ( ph -> ( ( VtxDeg ` G ) ` B ) = 1 ) |