This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmsnopg | |- ( B e. V -> dom { <. A , B >. } = { A } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- x e. _V |
|
| 2 | vex | |- y e. _V |
|
| 3 | 1 2 | opth1 | |- ( <. x , y >. = <. A , B >. -> x = A ) |
| 4 | 3 | exlimiv | |- ( E. y <. x , y >. = <. A , B >. -> x = A ) |
| 5 | opeq1 | |- ( x = A -> <. x , B >. = <. A , B >. ) |
|
| 6 | opeq2 | |- ( y = B -> <. x , y >. = <. x , B >. ) |
|
| 7 | 6 | eqeq1d | |- ( y = B -> ( <. x , y >. = <. A , B >. <-> <. x , B >. = <. A , B >. ) ) |
| 8 | 7 | spcegv | |- ( B e. V -> ( <. x , B >. = <. A , B >. -> E. y <. x , y >. = <. A , B >. ) ) |
| 9 | 5 8 | syl5 | |- ( B e. V -> ( x = A -> E. y <. x , y >. = <. A , B >. ) ) |
| 10 | 4 9 | impbid2 | |- ( B e. V -> ( E. y <. x , y >. = <. A , B >. <-> x = A ) ) |
| 11 | 1 | eldm2 | |- ( x e. dom { <. A , B >. } <-> E. y <. x , y >. e. { <. A , B >. } ) |
| 12 | opex | |- <. x , y >. e. _V |
|
| 13 | 12 | elsn | |- ( <. x , y >. e. { <. A , B >. } <-> <. x , y >. = <. A , B >. ) |
| 14 | 13 | exbii | |- ( E. y <. x , y >. e. { <. A , B >. } <-> E. y <. x , y >. = <. A , B >. ) |
| 15 | 11 14 | bitri | |- ( x e. dom { <. A , B >. } <-> E. y <. x , y >. = <. A , B >. ) |
| 16 | velsn | |- ( x e. { A } <-> x = A ) |
|
| 17 | 10 15 16 | 3bitr4g | |- ( B e. V -> ( x e. dom { <. A , B >. } <-> x e. { A } ) ) |
| 18 | 17 | eqrdv | |- ( B e. V -> dom { <. A , B >. } = { A } ) |