This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertex degree of a one-edge graph, case 2: an edge from the given vertex to some other vertex contributes one to the vertex's degree. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 22-Dec-2017) (Revised by AV, 21-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1egrvtxdg1.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 ) | |
| 1egrvtxdg1.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| 1egrvtxdg1.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
| 1egrvtxdg1.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| 1egrvtxdg1.n | ⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) | ||
| 1egrvtxdg1.i | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) | ||
| Assertion | 1egrvtxdg1 | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐵 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1egrvtxdg1.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 ) | |
| 2 | 1egrvtxdg1.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 3 | 1egrvtxdg1.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 4 | 1egrvtxdg1.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 5 | 1egrvtxdg1.n | ⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) | |
| 6 | 1egrvtxdg1.i | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) | |
| 7 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 8 | 3 1 | eleqtrrd | ⊢ ( 𝜑 → 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) |
| 9 | 4 1 | eleqtrrd | ⊢ ( 𝜑 → 𝐶 ∈ ( Vtx ‘ 𝐺 ) ) |
| 10 | 7 2 8 9 6 5 | usgr1e | ⊢ ( 𝜑 → 𝐺 ∈ USGraph ) |
| 11 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 12 | eqid | ⊢ dom ( iEdg ‘ 𝐺 ) = dom ( iEdg ‘ 𝐺 ) | |
| 13 | eqid | ⊢ ( VtxDeg ‘ 𝐺 ) = ( VtxDeg ‘ 𝐺 ) | |
| 14 | 7 11 12 13 | vtxdusgrval | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐵 ) = ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝐵 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) |
| 15 | 10 8 14 | syl2anc | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐵 ) = ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝐵 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) ) |
| 16 | dmeq | ⊢ ( ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } → dom ( iEdg ‘ 𝐺 ) = dom { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) | |
| 17 | 16 | adantl | ⊢ ( ( 𝜑 ∧ ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) → dom ( iEdg ‘ 𝐺 ) = dom { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) |
| 18 | prex | ⊢ { 𝐵 , 𝐶 } ∈ V | |
| 19 | dmsnopg | ⊢ ( { 𝐵 , 𝐶 } ∈ V → dom { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } = { 𝐴 } ) | |
| 20 | 18 19 | mp1i | ⊢ ( ( 𝜑 ∧ ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) → dom { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } = { 𝐴 } ) |
| 21 | 17 20 | eqtrd | ⊢ ( ( 𝜑 ∧ ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) → dom ( iEdg ‘ 𝐺 ) = { 𝐴 } ) |
| 22 | fveq1 | ⊢ ( ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } → ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ( { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ‘ 𝑥 ) ) | |
| 23 | 22 | eleq2d | ⊢ ( ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } → ( 𝐵 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ↔ 𝐵 ∈ ( { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ‘ 𝑥 ) ) ) |
| 24 | 23 | adantl | ⊢ ( ( 𝜑 ∧ ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) → ( 𝐵 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ↔ 𝐵 ∈ ( { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ‘ 𝑥 ) ) ) |
| 25 | 21 24 | rabeqbidv | ⊢ ( ( 𝜑 ∧ ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) → { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝐵 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } = { 𝑥 ∈ { 𝐴 } ∣ 𝐵 ∈ ( { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ‘ 𝑥 ) } ) |
| 26 | 25 | fveq2d | ⊢ ( ( 𝜑 ∧ ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝐵 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) = ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝐵 ∈ ( { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ‘ 𝑥 ) } ) ) |
| 27 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ‘ 𝑥 ) = ( { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ‘ 𝐴 ) ) | |
| 28 | 27 | eleq2d | ⊢ ( 𝑥 = 𝐴 → ( 𝐵 ∈ ( { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ‘ 𝑥 ) ↔ 𝐵 ∈ ( { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ‘ 𝐴 ) ) ) |
| 29 | 28 | rabsnif | ⊢ { 𝑥 ∈ { 𝐴 } ∣ 𝐵 ∈ ( { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ‘ 𝑥 ) } = if ( 𝐵 ∈ ( { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ‘ 𝐴 ) , { 𝐴 } , ∅ ) |
| 30 | prid1g | ⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ∈ { 𝐵 , 𝐶 } ) | |
| 31 | 3 30 | syl | ⊢ ( 𝜑 → 𝐵 ∈ { 𝐵 , 𝐶 } ) |
| 32 | fvsng | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ { 𝐵 , 𝐶 } ∈ V ) → ( { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ‘ 𝐴 ) = { 𝐵 , 𝐶 } ) | |
| 33 | 2 18 32 | sylancl | ⊢ ( 𝜑 → ( { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ‘ 𝐴 ) = { 𝐵 , 𝐶 } ) |
| 34 | 31 33 | eleqtrrd | ⊢ ( 𝜑 → 𝐵 ∈ ( { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ‘ 𝐴 ) ) |
| 35 | 34 | iftrued | ⊢ ( 𝜑 → if ( 𝐵 ∈ ( { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ‘ 𝐴 ) , { 𝐴 } , ∅ ) = { 𝐴 } ) |
| 36 | 29 35 | eqtrid | ⊢ ( 𝜑 → { 𝑥 ∈ { 𝐴 } ∣ 𝐵 ∈ ( { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ‘ 𝑥 ) } = { 𝐴 } ) |
| 37 | 36 | fveq2d | ⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝐵 ∈ ( { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ‘ 𝑥 ) } ) = ( ♯ ‘ { 𝐴 } ) ) |
| 38 | hashsng | ⊢ ( 𝐴 ∈ 𝑋 → ( ♯ ‘ { 𝐴 } ) = 1 ) | |
| 39 | 2 38 | syl | ⊢ ( 𝜑 → ( ♯ ‘ { 𝐴 } ) = 1 ) |
| 40 | 37 39 | eqtrd | ⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝐵 ∈ ( { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ‘ 𝑥 ) } ) = 1 ) |
| 41 | 40 | adantr | ⊢ ( ( 𝜑 ∧ ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) → ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝐵 ∈ ( { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ‘ 𝑥 ) } ) = 1 ) |
| 42 | 26 41 | eqtrd | ⊢ ( ( 𝜑 ∧ ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝐵 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) = 1 ) |
| 43 | 6 42 | mpdan | ⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝐵 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) = 1 ) |
| 44 | 15 43 | eqtrd | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐵 ) = 1 ) |