This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ZZ ring homomorphism is an isomorphism for N = 0 . (We only show group isomorphism here, but ring isomorphism follows, since it is a bijective ring homomorphism.) (Contributed by Mario Carneiro, 21-Apr-2016) (Revised by AV, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zzngim.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 0 ) | |
| zzngim.2 | ⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) | ||
| Assertion | zzngim | ⊢ 𝐿 ∈ ( ℤring GrpIso 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zzngim.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 0 ) | |
| 2 | zzngim.2 | ⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) | |
| 3 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 4 | 1 | zncrng | ⊢ ( 0 ∈ ℕ0 → 𝑌 ∈ CRing ) |
| 5 | crngring | ⊢ ( 𝑌 ∈ CRing → 𝑌 ∈ Ring ) | |
| 6 | 3 4 5 | mp2b | ⊢ 𝑌 ∈ Ring |
| 7 | 2 | zrhrhm | ⊢ ( 𝑌 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑌 ) ) |
| 8 | rhmghm | ⊢ ( 𝐿 ∈ ( ℤring RingHom 𝑌 ) → 𝐿 ∈ ( ℤring GrpHom 𝑌 ) ) | |
| 9 | 6 7 8 | mp2b | ⊢ 𝐿 ∈ ( ℤring GrpHom 𝑌 ) |
| 10 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 11 | 1 10 2 | znzrhfo | ⊢ ( 0 ∈ ℕ0 → 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) ) |
| 12 | 3 11 | ax-mp | ⊢ 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) |
| 13 | fofn | ⊢ ( 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) → 𝐿 Fn ℤ ) | |
| 14 | fnresdm | ⊢ ( 𝐿 Fn ℤ → ( 𝐿 ↾ ℤ ) = 𝐿 ) | |
| 15 | 12 13 14 | mp2b | ⊢ ( 𝐿 ↾ ℤ ) = 𝐿 |
| 16 | 2 | reseq1i | ⊢ ( 𝐿 ↾ ℤ ) = ( ( ℤRHom ‘ 𝑌 ) ↾ ℤ ) |
| 17 | 15 16 | eqtr3i | ⊢ 𝐿 = ( ( ℤRHom ‘ 𝑌 ) ↾ ℤ ) |
| 18 | eqid | ⊢ 0 = 0 | |
| 19 | 18 | iftruei | ⊢ if ( 0 = 0 , ℤ , ( 0 ..^ 0 ) ) = ℤ |
| 20 | 19 | eqcomi | ⊢ ℤ = if ( 0 = 0 , ℤ , ( 0 ..^ 0 ) ) |
| 21 | 1 10 17 20 | znf1o | ⊢ ( 0 ∈ ℕ0 → 𝐿 : ℤ –1-1-onto→ ( Base ‘ 𝑌 ) ) |
| 22 | 3 21 | ax-mp | ⊢ 𝐿 : ℤ –1-1-onto→ ( Base ‘ 𝑌 ) |
| 23 | zringbas | ⊢ ℤ = ( Base ‘ ℤring ) | |
| 24 | 23 10 | isgim | ⊢ ( 𝐿 ∈ ( ℤring GrpIso 𝑌 ) ↔ ( 𝐿 ∈ ( ℤring GrpHom 𝑌 ) ∧ 𝐿 : ℤ –1-1-onto→ ( Base ‘ 𝑌 ) ) ) |
| 25 | 9 22 24 | mpbir2an | ⊢ 𝐿 ∈ ( ℤring GrpIso 𝑌 ) |