This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ordering of the Z/nZ structure. (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | znle2.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| znle2.f | ⊢ 𝐹 = ( ( ℤRHom ‘ 𝑌 ) ↾ 𝑊 ) | ||
| znle2.w | ⊢ 𝑊 = if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) | ||
| znle2.l | ⊢ ≤ = ( le ‘ 𝑌 ) | ||
| Assertion | znle2 | ⊢ ( 𝑁 ∈ ℕ0 → ≤ = ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znle2.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| 2 | znle2.f | ⊢ 𝐹 = ( ( ℤRHom ‘ 𝑌 ) ↾ 𝑊 ) | |
| 3 | znle2.w | ⊢ 𝑊 = if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) | |
| 4 | znle2.l | ⊢ ≤ = ( le ‘ 𝑌 ) | |
| 5 | eqid | ⊢ ( RSpan ‘ ℤring ) = ( RSpan ‘ ℤring ) | |
| 6 | eqid | ⊢ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) = ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) | |
| 7 | eqid | ⊢ ( ( ℤRHom ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ↾ 𝑊 ) = ( ( ℤRHom ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ↾ 𝑊 ) | |
| 8 | 5 6 1 7 3 4 | znle | ⊢ ( 𝑁 ∈ ℕ0 → ≤ = ( ( ( ( ℤRHom ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ↾ 𝑊 ) ∘ ≤ ) ∘ ◡ ( ( ℤRHom ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ↾ 𝑊 ) ) ) |
| 9 | 5 6 1 | znzrh | ⊢ ( 𝑁 ∈ ℕ0 → ( ℤRHom ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) = ( ℤRHom ‘ 𝑌 ) ) |
| 10 | 9 | reseq1d | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ℤRHom ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ↾ 𝑊 ) = ( ( ℤRHom ‘ 𝑌 ) ↾ 𝑊 ) ) |
| 11 | 10 2 | eqtr4di | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ℤRHom ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ↾ 𝑊 ) = 𝐹 ) |
| 12 | 11 | coeq1d | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ( ℤRHom ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ↾ 𝑊 ) ∘ ≤ ) = ( 𝐹 ∘ ≤ ) ) |
| 13 | 11 | cnveqd | ⊢ ( 𝑁 ∈ ℕ0 → ◡ ( ( ℤRHom ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ↾ 𝑊 ) = ◡ 𝐹 ) |
| 14 | 12 13 | coeq12d | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ( ( ℤRHom ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ↾ 𝑊 ) ∘ ≤ ) ∘ ◡ ( ( ℤRHom ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ↾ 𝑊 ) ) = ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ) |
| 15 | 8 14 | eqtrd | ⊢ ( 𝑁 ∈ ℕ0 → ≤ = ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ) |