This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ZZ ring homomorphism is an isomorphism for N = 0 . (We only show group isomorphism here, but ring isomorphism follows, since it is a bijective ring homomorphism.) (Contributed by Mario Carneiro, 21-Apr-2016) (Revised by AV, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zzngim.y | |- Y = ( Z/nZ ` 0 ) |
|
| zzngim.2 | |- L = ( ZRHom ` Y ) |
||
| Assertion | zzngim | |- L e. ( ZZring GrpIso Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zzngim.y | |- Y = ( Z/nZ ` 0 ) |
|
| 2 | zzngim.2 | |- L = ( ZRHom ` Y ) |
|
| 3 | 0nn0 | |- 0 e. NN0 |
|
| 4 | 1 | zncrng | |- ( 0 e. NN0 -> Y e. CRing ) |
| 5 | crngring | |- ( Y e. CRing -> Y e. Ring ) |
|
| 6 | 3 4 5 | mp2b | |- Y e. Ring |
| 7 | 2 | zrhrhm | |- ( Y e. Ring -> L e. ( ZZring RingHom Y ) ) |
| 8 | rhmghm | |- ( L e. ( ZZring RingHom Y ) -> L e. ( ZZring GrpHom Y ) ) |
|
| 9 | 6 7 8 | mp2b | |- L e. ( ZZring GrpHom Y ) |
| 10 | eqid | |- ( Base ` Y ) = ( Base ` Y ) |
|
| 11 | 1 10 2 | znzrhfo | |- ( 0 e. NN0 -> L : ZZ -onto-> ( Base ` Y ) ) |
| 12 | 3 11 | ax-mp | |- L : ZZ -onto-> ( Base ` Y ) |
| 13 | fofn | |- ( L : ZZ -onto-> ( Base ` Y ) -> L Fn ZZ ) |
|
| 14 | fnresdm | |- ( L Fn ZZ -> ( L |` ZZ ) = L ) |
|
| 15 | 12 13 14 | mp2b | |- ( L |` ZZ ) = L |
| 16 | 2 | reseq1i | |- ( L |` ZZ ) = ( ( ZRHom ` Y ) |` ZZ ) |
| 17 | 15 16 | eqtr3i | |- L = ( ( ZRHom ` Y ) |` ZZ ) |
| 18 | eqid | |- 0 = 0 |
|
| 19 | 18 | iftruei | |- if ( 0 = 0 , ZZ , ( 0 ..^ 0 ) ) = ZZ |
| 20 | 19 | eqcomi | |- ZZ = if ( 0 = 0 , ZZ , ( 0 ..^ 0 ) ) |
| 21 | 1 10 17 20 | znf1o | |- ( 0 e. NN0 -> L : ZZ -1-1-onto-> ( Base ` Y ) ) |
| 22 | 3 21 | ax-mp | |- L : ZZ -1-1-onto-> ( Base ` Y ) |
| 23 | zringbas | |- ZZ = ( Base ` ZZring ) |
|
| 24 | 23 10 | isgim | |- ( L e. ( ZZring GrpIso Y ) <-> ( L e. ( ZZring GrpHom Y ) /\ L : ZZ -1-1-onto-> ( Base ` Y ) ) ) |
| 25 | 9 22 24 | mpbir2an | |- L e. ( ZZring GrpIso Y ) |