This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ZZ ring homomorphism is an isomorphism for N = 0 . (We only show group isomorphism here, but ring isomorphism follows, since it is a bijective ring homomorphism.) (Contributed by Mario Carneiro, 21-Apr-2016) (Revised by AV, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zzngim.y | ||
| zzngim.2 | |||
| Assertion | zzngim |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zzngim.y | ||
| 2 | zzngim.2 | ||
| 3 | 0nn0 | ||
| 4 | 1 | zncrng | |
| 5 | crngring | ||
| 6 | 3 4 5 | mp2b | |
| 7 | 2 | zrhrhm | |
| 8 | rhmghm | ||
| 9 | 6 7 8 | mp2b | |
| 10 | eqid | ||
| 11 | 1 10 2 | znzrhfo | |
| 12 | 3 11 | ax-mp | |
| 13 | fofn | ||
| 14 | fnresdm | ||
| 15 | 12 13 14 | mp2b | |
| 16 | 2 | reseq1i | |
| 17 | 15 16 | eqtr3i | |
| 18 | eqid | ||
| 19 | 18 | iftruei | |
| 20 | 19 | eqcomi | |
| 21 | 1 10 17 20 | znf1o | |
| 22 | 3 21 | ax-mp | |
| 23 | zringbas | ||
| 24 | 23 10 | isgim | |
| 25 | 9 22 24 | mpbir2an |