This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integers are not a division ring, and therefore not a field. (Contributed by AV, 22-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zringndrg | ⊢ ℤring ∉ DivRing |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1ne2 | ⊢ 1 ≠ 2 | |
| 2 | 1 | nesymi | ⊢ ¬ 2 = 1 |
| 3 | 2re | ⊢ 2 ∈ ℝ | |
| 4 | 0le2 | ⊢ 0 ≤ 2 | |
| 5 | absid | ⊢ ( ( 2 ∈ ℝ ∧ 0 ≤ 2 ) → ( abs ‘ 2 ) = 2 ) | |
| 6 | 3 4 5 | mp2an | ⊢ ( abs ‘ 2 ) = 2 |
| 7 | 6 | eqeq1i | ⊢ ( ( abs ‘ 2 ) = 1 ↔ 2 = 1 ) |
| 8 | 2 7 | mtbir | ⊢ ¬ ( abs ‘ 2 ) = 1 |
| 9 | 8 | intnan | ⊢ ¬ ( 2 ∈ ℤ ∧ ( abs ‘ 2 ) = 1 ) |
| 10 | zringunit | ⊢ ( 2 ∈ ( Unit ‘ ℤring ) ↔ ( 2 ∈ ℤ ∧ ( abs ‘ 2 ) = 1 ) ) | |
| 11 | 9 10 | mtbir | ⊢ ¬ 2 ∈ ( Unit ‘ ℤring ) |
| 12 | zringbas | ⊢ ℤ = ( Base ‘ ℤring ) | |
| 13 | eqid | ⊢ ( Unit ‘ ℤring ) = ( Unit ‘ ℤring ) | |
| 14 | zring0 | ⊢ 0 = ( 0g ‘ ℤring ) | |
| 15 | 12 13 14 | isdrng | ⊢ ( ℤring ∈ DivRing ↔ ( ℤring ∈ Ring ∧ ( Unit ‘ ℤring ) = ( ℤ ∖ { 0 } ) ) ) |
| 16 | 2z | ⊢ 2 ∈ ℤ | |
| 17 | 2ne0 | ⊢ 2 ≠ 0 | |
| 18 | eldifsn | ⊢ ( 2 ∈ ( ℤ ∖ { 0 } ) ↔ ( 2 ∈ ℤ ∧ 2 ≠ 0 ) ) | |
| 19 | 16 17 18 | mpbir2an | ⊢ 2 ∈ ( ℤ ∖ { 0 } ) |
| 20 | id | ⊢ ( ( Unit ‘ ℤring ) = ( ℤ ∖ { 0 } ) → ( Unit ‘ ℤring ) = ( ℤ ∖ { 0 } ) ) | |
| 21 | 19 20 | eleqtrrid | ⊢ ( ( Unit ‘ ℤring ) = ( ℤ ∖ { 0 } ) → 2 ∈ ( Unit ‘ ℤring ) ) |
| 22 | 15 21 | simplbiim | ⊢ ( ℤring ∈ DivRing → 2 ∈ ( Unit ‘ ℤring ) ) |
| 23 | 11 22 | mto | ⊢ ¬ ℤring ∈ DivRing |
| 24 | 23 | nelir | ⊢ ℤring ∉ DivRing |