This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Zorn's Lemma. If the union of every chain (with respect to inclusion) in a set belongs to the set, then the set contains a maximal element. Theorem 6M of Enderton p. 151. This version of zorn avoids the Axiom of Choice by assuming that A is well-orderable. (Contributed by NM, 12-Aug-2004) (Revised by Mario Carneiro, 9-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zorng | |- ( ( A e. dom card /\ A. z ( ( z C_ A /\ [C.] Or z ) -> U. z e. A ) ) -> E. x e. A A. y e. A -. x C. y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | risset | |- ( U. z e. A <-> E. x e. A x = U. z ) |
|
| 2 | eqimss2 | |- ( x = U. z -> U. z C_ x ) |
|
| 3 | unissb | |- ( U. z C_ x <-> A. u e. z u C_ x ) |
|
| 4 | 2 3 | sylib | |- ( x = U. z -> A. u e. z u C_ x ) |
| 5 | vex | |- x e. _V |
|
| 6 | 5 | brrpss | |- ( u [C.] x <-> u C. x ) |
| 7 | 6 | orbi1i | |- ( ( u [C.] x \/ u = x ) <-> ( u C. x \/ u = x ) ) |
| 8 | sspss | |- ( u C_ x <-> ( u C. x \/ u = x ) ) |
|
| 9 | 7 8 | bitr4i | |- ( ( u [C.] x \/ u = x ) <-> u C_ x ) |
| 10 | 9 | ralbii | |- ( A. u e. z ( u [C.] x \/ u = x ) <-> A. u e. z u C_ x ) |
| 11 | 4 10 | sylibr | |- ( x = U. z -> A. u e. z ( u [C.] x \/ u = x ) ) |
| 12 | 11 | reximi | |- ( E. x e. A x = U. z -> E. x e. A A. u e. z ( u [C.] x \/ u = x ) ) |
| 13 | 1 12 | sylbi | |- ( U. z e. A -> E. x e. A A. u e. z ( u [C.] x \/ u = x ) ) |
| 14 | 13 | imim2i | |- ( ( ( z C_ A /\ [C.] Or z ) -> U. z e. A ) -> ( ( z C_ A /\ [C.] Or z ) -> E. x e. A A. u e. z ( u [C.] x \/ u = x ) ) ) |
| 15 | 14 | alimi | |- ( A. z ( ( z C_ A /\ [C.] Or z ) -> U. z e. A ) -> A. z ( ( z C_ A /\ [C.] Or z ) -> E. x e. A A. u e. z ( u [C.] x \/ u = x ) ) ) |
| 16 | porpss | |- [C.] Po A |
|
| 17 | zorn2g | |- ( ( A e. dom card /\ [C.] Po A /\ A. z ( ( z C_ A /\ [C.] Or z ) -> E. x e. A A. u e. z ( u [C.] x \/ u = x ) ) ) -> E. x e. A A. y e. A -. x [C.] y ) |
|
| 18 | 16 17 | mp3an2 | |- ( ( A e. dom card /\ A. z ( ( z C_ A /\ [C.] Or z ) -> E. x e. A A. u e. z ( u [C.] x \/ u = x ) ) ) -> E. x e. A A. y e. A -. x [C.] y ) |
| 19 | 15 18 | sylan2 | |- ( ( A e. dom card /\ A. z ( ( z C_ A /\ [C.] Or z ) -> U. z e. A ) ) -> E. x e. A A. y e. A -. x [C.] y ) |
| 20 | vex | |- y e. _V |
|
| 21 | 20 | brrpss | |- ( x [C.] y <-> x C. y ) |
| 22 | 21 | notbii | |- ( -. x [C.] y <-> -. x C. y ) |
| 23 | 22 | ralbii | |- ( A. y e. A -. x [C.] y <-> A. y e. A -. x C. y ) |
| 24 | 23 | rexbii | |- ( E. x e. A A. y e. A -. x [C.] y <-> E. x e. A A. y e. A -. x C. y ) |
| 25 | 19 24 | sylib | |- ( ( A e. dom card /\ A. z ( ( z C_ A /\ [C.] Or z ) -> U. z e. A ) ) -> E. x e. A A. y e. A -. x C. y ) |