This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of an integer and a real number between 0 and 1 is less than or equal to a second integer iff the sum is less than the second integer. (Contributed by AV, 1-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zltaddlt1le | |- ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> ( ( M + A ) < N <-> ( M + A ) <_ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 2 | 1 | adantr | |- ( ( M e. ZZ /\ A e. ( 0 (,) 1 ) ) -> M e. RR ) |
| 3 | elioore | |- ( A e. ( 0 (,) 1 ) -> A e. RR ) |
|
| 4 | 3 | adantl | |- ( ( M e. ZZ /\ A e. ( 0 (,) 1 ) ) -> A e. RR ) |
| 5 | 2 4 | readdcld | |- ( ( M e. ZZ /\ A e. ( 0 (,) 1 ) ) -> ( M + A ) e. RR ) |
| 6 | 5 | 3adant2 | |- ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> ( M + A ) e. RR ) |
| 7 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 8 | 7 | 3ad2ant2 | |- ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> N e. RR ) |
| 9 | ltle | |- ( ( ( M + A ) e. RR /\ N e. RR ) -> ( ( M + A ) < N -> ( M + A ) <_ N ) ) |
|
| 10 | 6 8 9 | syl2anc | |- ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> ( ( M + A ) < N -> ( M + A ) <_ N ) ) |
| 11 | elioo3g | |- ( A e. ( 0 (,) 1 ) <-> ( ( 0 e. RR* /\ 1 e. RR* /\ A e. RR* ) /\ ( 0 < A /\ A < 1 ) ) ) |
|
| 12 | simpl | |- ( ( 0 < A /\ A < 1 ) -> 0 < A ) |
|
| 13 | 11 12 | simplbiim | |- ( A e. ( 0 (,) 1 ) -> 0 < A ) |
| 14 | 3 13 | elrpd | |- ( A e. ( 0 (,) 1 ) -> A e. RR+ ) |
| 15 | addlelt | |- ( ( M e. RR /\ N e. RR /\ A e. RR+ ) -> ( ( M + A ) <_ N -> M < N ) ) |
|
| 16 | 1 7 14 15 | syl3an | |- ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> ( ( M + A ) <_ N -> M < N ) ) |
| 17 | zltp1le | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> ( M + 1 ) <_ N ) ) |
|
| 18 | 17 | 3adant3 | |- ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> ( M < N <-> ( M + 1 ) <_ N ) ) |
| 19 | 3 | 3ad2ant3 | |- ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> A e. RR ) |
| 20 | 1red | |- ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> 1 e. RR ) |
|
| 21 | 1 | 3ad2ant1 | |- ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> M e. RR ) |
| 22 | simpr | |- ( ( 0 < A /\ A < 1 ) -> A < 1 ) |
|
| 23 | 11 22 | simplbiim | |- ( A e. ( 0 (,) 1 ) -> A < 1 ) |
| 24 | 23 | 3ad2ant3 | |- ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> A < 1 ) |
| 25 | 19 20 21 24 | ltadd2dd | |- ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> ( M + A ) < ( M + 1 ) ) |
| 26 | peano2z | |- ( M e. ZZ -> ( M + 1 ) e. ZZ ) |
|
| 27 | 26 | zred | |- ( M e. ZZ -> ( M + 1 ) e. RR ) |
| 28 | 27 | 3ad2ant1 | |- ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> ( M + 1 ) e. RR ) |
| 29 | ltletr | |- ( ( ( M + A ) e. RR /\ ( M + 1 ) e. RR /\ N e. RR ) -> ( ( ( M + A ) < ( M + 1 ) /\ ( M + 1 ) <_ N ) -> ( M + A ) < N ) ) |
|
| 30 | 6 28 8 29 | syl3anc | |- ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> ( ( ( M + A ) < ( M + 1 ) /\ ( M + 1 ) <_ N ) -> ( M + A ) < N ) ) |
| 31 | 25 30 | mpand | |- ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> ( ( M + 1 ) <_ N -> ( M + A ) < N ) ) |
| 32 | 18 31 | sylbid | |- ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> ( M < N -> ( M + A ) < N ) ) |
| 33 | 16 32 | syld | |- ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> ( ( M + A ) <_ N -> ( M + A ) < N ) ) |
| 34 | 10 33 | impbid | |- ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> ( ( M + A ) < N <-> ( M + A ) <_ N ) ) |