This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An extended nonnegative integer is an extended nonnegative real. (Contributed by AV, 10-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xnn0xrge0 | ⊢ ( 𝐴 ∈ ℕ0* → 𝐴 ∈ ( 0 [,] +∞ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxnn0 | ⊢ ( 𝐴 ∈ ℕ0* ↔ ( 𝐴 ∈ ℕ0 ∨ 𝐴 = +∞ ) ) | |
| 2 | nn0re | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) | |
| 3 | 2 | rexrd | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ* ) |
| 4 | nn0ge0 | ⊢ ( 𝐴 ∈ ℕ0 → 0 ≤ 𝐴 ) | |
| 5 | elxrge0 | ⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ) | |
| 6 | 3 4 5 | sylanbrc | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 7 | 0xr | ⊢ 0 ∈ ℝ* | |
| 8 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 9 | 0lepnf | ⊢ 0 ≤ +∞ | |
| 10 | ubicc2 | ⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞ ) → +∞ ∈ ( 0 [,] +∞ ) ) | |
| 11 | 7 8 9 10 | mp3an | ⊢ +∞ ∈ ( 0 [,] +∞ ) |
| 12 | eleq1 | ⊢ ( 𝐴 = +∞ → ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ +∞ ∈ ( 0 [,] +∞ ) ) ) | |
| 13 | 11 12 | mpbiri | ⊢ ( 𝐴 = +∞ → 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 14 | 6 13 | jaoi | ⊢ ( ( 𝐴 ∈ ℕ0 ∨ 𝐴 = +∞ ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 15 | 1 14 | sylbi | ⊢ ( 𝐴 ∈ ℕ0* → 𝐴 ∈ ( 0 [,] +∞ ) ) |