This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the sum of a real number and a positive real number is less than or equal to a third real number, the first real number is less than the third real number. (Contributed by AV, 1-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addlelt | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+ ) → ( ( 𝑀 + 𝐴 ) ≤ 𝑁 → 𝑀 < 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpgt0 | ⊢ ( 𝐴 ∈ ℝ+ → 0 < 𝐴 ) | |
| 2 | 1 | 3ad2ant3 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+ ) → 0 < 𝐴 ) |
| 3 | rpre | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) | |
| 4 | 3 | 3ad2ant3 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
| 5 | simp1 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+ ) → 𝑀 ∈ ℝ ) | |
| 6 | 4 5 | ltaddposd | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+ ) → ( 0 < 𝐴 ↔ 𝑀 < ( 𝑀 + 𝐴 ) ) ) |
| 7 | 2 6 | mpbid | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+ ) → 𝑀 < ( 𝑀 + 𝐴 ) ) |
| 8 | simpl | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝐴 ∈ ℝ+ ) → 𝑀 ∈ ℝ ) | |
| 9 | 3 | adantl | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝐴 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
| 10 | 8 9 | readdcld | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝐴 ∈ ℝ+ ) → ( 𝑀 + 𝐴 ) ∈ ℝ ) |
| 11 | 10 | 3adant2 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+ ) → ( 𝑀 + 𝐴 ) ∈ ℝ ) |
| 12 | simp2 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+ ) → 𝑁 ∈ ℝ ) | |
| 13 | ltletr | ⊢ ( ( 𝑀 ∈ ℝ ∧ ( 𝑀 + 𝐴 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 𝑀 < ( 𝑀 + 𝐴 ) ∧ ( 𝑀 + 𝐴 ) ≤ 𝑁 ) → 𝑀 < 𝑁 ) ) | |
| 14 | 5 11 12 13 | syl3anc | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+ ) → ( ( 𝑀 < ( 𝑀 + 𝐴 ) ∧ ( 𝑀 + 𝐴 ) ≤ 𝑁 ) → 𝑀 < 𝑁 ) ) |
| 15 | 7 14 | mpand | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+ ) → ( ( 𝑀 + 𝐴 ) ≤ 𝑁 → 𝑀 < 𝑁 ) ) |