This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for zeroopropd . (Contributed by Zhi Wang, 26-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | initopropd.1 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | |
| initopropd.2 | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) | ||
| initopropdlem.1 | ⊢ ( 𝜑 → ¬ 𝐶 ∈ V ) | ||
| Assertion | zeroopropdlem | ⊢ ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ( ZeroO ‘ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | initopropd.1 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | |
| 2 | initopropd.2 | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) | |
| 3 | initopropdlem.1 | ⊢ ( 𝜑 → ¬ 𝐶 ∈ V ) | |
| 4 | zeroofn | ⊢ ZeroO Fn Cat | |
| 5 | ssv | ⊢ Cat ⊆ V | |
| 6 | simpr | ⊢ ( ( 𝜑 ∧ 𝐷 ∈ Cat ) → 𝐷 ∈ Cat ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 8 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 9 | 6 7 8 | zerooval | ⊢ ( ( 𝜑 ∧ 𝐷 ∈ Cat ) → ( ZeroO ‘ 𝐷 ) = ( ( InitO ‘ 𝐷 ) ∩ ( TermO ‘ 𝐷 ) ) ) |
| 10 | 1 2 3 | initopropdlem | ⊢ ( 𝜑 → ( InitO ‘ 𝐶 ) = ( InitO ‘ 𝐷 ) ) |
| 11 | fvprc | ⊢ ( ¬ 𝐶 ∈ V → ( InitO ‘ 𝐶 ) = ∅ ) | |
| 12 | 3 11 | syl | ⊢ ( 𝜑 → ( InitO ‘ 𝐶 ) = ∅ ) |
| 13 | 10 12 | eqtr3d | ⊢ ( 𝜑 → ( InitO ‘ 𝐷 ) = ∅ ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝐷 ∈ Cat ) → ( InitO ‘ 𝐷 ) = ∅ ) |
| 15 | 1 2 3 | termopropdlem | ⊢ ( 𝜑 → ( TermO ‘ 𝐶 ) = ( TermO ‘ 𝐷 ) ) |
| 16 | fvprc | ⊢ ( ¬ 𝐶 ∈ V → ( TermO ‘ 𝐶 ) = ∅ ) | |
| 17 | 3 16 | syl | ⊢ ( 𝜑 → ( TermO ‘ 𝐶 ) = ∅ ) |
| 18 | 15 17 | eqtr3d | ⊢ ( 𝜑 → ( TermO ‘ 𝐷 ) = ∅ ) |
| 19 | 18 | adantr | ⊢ ( ( 𝜑 ∧ 𝐷 ∈ Cat ) → ( TermO ‘ 𝐷 ) = ∅ ) |
| 20 | 14 19 | ineq12d | ⊢ ( ( 𝜑 ∧ 𝐷 ∈ Cat ) → ( ( InitO ‘ 𝐷 ) ∩ ( TermO ‘ 𝐷 ) ) = ( ∅ ∩ ∅ ) ) |
| 21 | inidm | ⊢ ( ∅ ∩ ∅ ) = ∅ | |
| 22 | 20 21 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝐷 ∈ Cat ) → ( ( InitO ‘ 𝐷 ) ∩ ( TermO ‘ 𝐷 ) ) = ∅ ) |
| 23 | 9 22 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝐷 ∈ Cat ) → ( ZeroO ‘ 𝐷 ) = ∅ ) |
| 24 | 4 3 5 23 | initopropdlemlem | ⊢ ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ( ZeroO ‘ 𝐷 ) ) |