This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two structures with the same base, hom-sets and composition operation have the same zero objects. (Contributed by Zhi Wang, 26-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | initopropd.1 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
|
| initopropd.2 | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
||
| Assertion | zeroopropd | |- ( ph -> ( ZeroO ` C ) = ( ZeroO ` D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | initopropd.1 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
|
| 2 | initopropd.2 | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
|
| 3 | 1 | adantr | |- ( ( ph /\ -. C e. _V ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 4 | 2 | adantr | |- ( ( ph /\ -. C e. _V ) -> ( comf ` C ) = ( comf ` D ) ) |
| 5 | simpr | |- ( ( ph /\ -. C e. _V ) -> -. C e. _V ) |
|
| 6 | 3 4 5 | zeroopropdlem | |- ( ( ph /\ -. C e. _V ) -> ( ZeroO ` C ) = ( ZeroO ` D ) ) |
| 7 | 1 | adantr | |- ( ( ph /\ -. D e. _V ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 8 | 7 | eqcomd | |- ( ( ph /\ -. D e. _V ) -> ( Homf ` D ) = ( Homf ` C ) ) |
| 9 | 2 | adantr | |- ( ( ph /\ -. D e. _V ) -> ( comf ` C ) = ( comf ` D ) ) |
| 10 | 9 | eqcomd | |- ( ( ph /\ -. D e. _V ) -> ( comf ` D ) = ( comf ` C ) ) |
| 11 | simpr | |- ( ( ph /\ -. D e. _V ) -> -. D e. _V ) |
|
| 12 | 8 10 11 | zeroopropdlem | |- ( ( ph /\ -. D e. _V ) -> ( ZeroO ` D ) = ( ZeroO ` C ) ) |
| 13 | 12 | eqcomd | |- ( ( ph /\ -. D e. _V ) -> ( ZeroO ` C ) = ( ZeroO ` D ) ) |
| 14 | 1 | ad2antrr | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 15 | 2 | ad2antrr | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( comf ` C ) = ( comf ` D ) ) |
| 16 | 14 15 | initopropd | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( InitO ` C ) = ( InitO ` D ) ) |
| 17 | 14 15 | termopropd | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( TermO ` C ) = ( TermO ` D ) ) |
| 18 | 16 17 | ineq12d | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( ( InitO ` C ) i^i ( TermO ` C ) ) = ( ( InitO ` D ) i^i ( TermO ` D ) ) ) |
| 19 | simpr | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> C e. Cat ) |
|
| 20 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 21 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 22 | 19 20 21 | zerooval | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( ZeroO ` C ) = ( ( InitO ` C ) i^i ( TermO ` C ) ) ) |
| 23 | 1 | adantr | |- ( ( ph /\ ( C e. _V /\ D e. _V ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 24 | 2 | adantr | |- ( ( ph /\ ( C e. _V /\ D e. _V ) ) -> ( comf ` C ) = ( comf ` D ) ) |
| 25 | simprl | |- ( ( ph /\ ( C e. _V /\ D e. _V ) ) -> C e. _V ) |
|
| 26 | simprr | |- ( ( ph /\ ( C e. _V /\ D e. _V ) ) -> D e. _V ) |
|
| 27 | 23 24 25 26 | catpropd | |- ( ( ph /\ ( C e. _V /\ D e. _V ) ) -> ( C e. Cat <-> D e. Cat ) ) |
| 28 | 27 | biimpa | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> D e. Cat ) |
| 29 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 30 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 31 | 28 29 30 | zerooval | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( ZeroO ` D ) = ( ( InitO ` D ) i^i ( TermO ` D ) ) ) |
| 32 | 18 22 31 | 3eqtr4d | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) -> ( ZeroO ` C ) = ( ZeroO ` D ) ) |
| 33 | 27 | pm5.32i | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ C e. Cat ) <-> ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ D e. Cat ) ) |
| 34 | 33 32 | sylbir | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ D e. Cat ) -> ( ZeroO ` C ) = ( ZeroO ` D ) ) |
| 35 | zeroofn | |- ZeroO Fn Cat |
|
| 36 | 35 | fndmi | |- dom ZeroO = Cat |
| 37 | 36 | eleq2i | |- ( C e. dom ZeroO <-> C e. Cat ) |
| 38 | ndmfv | |- ( -. C e. dom ZeroO -> ( ZeroO ` C ) = (/) ) |
|
| 39 | 37 38 | sylnbir | |- ( -. C e. Cat -> ( ZeroO ` C ) = (/) ) |
| 40 | 39 | ad2antrl | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ ( -. C e. Cat /\ -. D e. Cat ) ) -> ( ZeroO ` C ) = (/) ) |
| 41 | 36 | eleq2i | |- ( D e. dom ZeroO <-> D e. Cat ) |
| 42 | ndmfv | |- ( -. D e. dom ZeroO -> ( ZeroO ` D ) = (/) ) |
|
| 43 | 41 42 | sylnbir | |- ( -. D e. Cat -> ( ZeroO ` D ) = (/) ) |
| 44 | 43 | ad2antll | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ ( -. C e. Cat /\ -. D e. Cat ) ) -> ( ZeroO ` D ) = (/) ) |
| 45 | 40 44 | eqtr4d | |- ( ( ( ph /\ ( C e. _V /\ D e. _V ) ) /\ ( -. C e. Cat /\ -. D e. Cat ) ) -> ( ZeroO ` C ) = ( ZeroO ` D ) ) |
| 46 | 32 34 45 | pm2.61ddan | |- ( ( ph /\ ( C e. _V /\ D e. _V ) ) -> ( ZeroO ` C ) = ( ZeroO ` D ) ) |
| 47 | 6 13 46 | pm2.61dda | |- ( ph -> ( ZeroO ` C ) = ( ZeroO ` D ) ) |