This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of divisibility: if D divides A then it divides B x. A . (Contributed by NM, 3-Oct-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zdivmul | ⊢ ( ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 / 𝐷 ) ∈ ℤ ) → ( ( 𝐵 · 𝐴 ) / 𝐷 ) ∈ ℤ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) | |
| 2 | 1 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ ) → 𝐵 ∈ ℂ ) |
| 3 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
| 5 | nncn | ⊢ ( 𝐷 ∈ ℕ → 𝐷 ∈ ℂ ) | |
| 6 | nnne0 | ⊢ ( 𝐷 ∈ ℕ → 𝐷 ≠ 0 ) | |
| 7 | 5 6 | jca | ⊢ ( 𝐷 ∈ ℕ → ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) |
| 8 | 7 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ ) → ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) |
| 9 | divass | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐵 · 𝐴 ) / 𝐷 ) = ( 𝐵 · ( 𝐴 / 𝐷 ) ) ) | |
| 10 | 2 4 8 9 | syl3anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ ) → ( ( 𝐵 · 𝐴 ) / 𝐷 ) = ( 𝐵 · ( 𝐴 / 𝐷 ) ) ) |
| 11 | 10 | 3comr | ⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐵 · 𝐴 ) / 𝐷 ) = ( 𝐵 · ( 𝐴 / 𝐷 ) ) ) |
| 12 | 11 | adantr | ⊢ ( ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 / 𝐷 ) ∈ ℤ ) → ( ( 𝐵 · 𝐴 ) / 𝐷 ) = ( 𝐵 · ( 𝐴 / 𝐷 ) ) ) |
| 13 | zmulcl | ⊢ ( ( 𝐵 ∈ ℤ ∧ ( 𝐴 / 𝐷 ) ∈ ℤ ) → ( 𝐵 · ( 𝐴 / 𝐷 ) ) ∈ ℤ ) | |
| 14 | 13 | 3ad2antl3 | ⊢ ( ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 / 𝐷 ) ∈ ℤ ) → ( 𝐵 · ( 𝐴 / 𝐷 ) ) ∈ ℤ ) |
| 15 | 12 14 | eqeltrd | ⊢ ( ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 / 𝐷 ) ∈ ℤ ) → ( ( 𝐵 · 𝐴 ) / 𝐷 ) ∈ ℤ ) |