This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integers are an Abelian group under addition. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use. Use zsubrg instead. (New usage is discouraged.) (Contributed by NM, 4-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zaddablx.g | ⊢ 𝐺 = { 〈 1 , ℤ 〉 , 〈 2 , + 〉 } | |
| Assertion | zaddablx | ⊢ 𝐺 ∈ Abel |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zaddablx.g | ⊢ 𝐺 = { 〈 1 , ℤ 〉 , 〈 2 , + 〉 } | |
| 2 | zex | ⊢ ℤ ∈ V | |
| 3 | addex | ⊢ + ∈ V | |
| 4 | zaddcl | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 + 𝑦 ) ∈ ℤ ) | |
| 5 | zcn | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) | |
| 6 | zcn | ⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℂ ) | |
| 7 | zcn | ⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ ℂ ) | |
| 8 | addass | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) | |
| 9 | 5 6 7 8 | syl3an | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 10 | 0z | ⊢ 0 ∈ ℤ | |
| 11 | 5 | addlidd | ⊢ ( 𝑥 ∈ ℤ → ( 0 + 𝑥 ) = 𝑥 ) |
| 12 | znegcl | ⊢ ( 𝑥 ∈ ℤ → - 𝑥 ∈ ℤ ) | |
| 13 | zcn | ⊢ ( - 𝑥 ∈ ℤ → - 𝑥 ∈ ℂ ) | |
| 14 | addcom | ⊢ ( ( 𝑥 ∈ ℂ ∧ - 𝑥 ∈ ℂ ) → ( 𝑥 + - 𝑥 ) = ( - 𝑥 + 𝑥 ) ) | |
| 15 | 5 13 14 | syl2an | ⊢ ( ( 𝑥 ∈ ℤ ∧ - 𝑥 ∈ ℤ ) → ( 𝑥 + - 𝑥 ) = ( - 𝑥 + 𝑥 ) ) |
| 16 | 12 15 | mpdan | ⊢ ( 𝑥 ∈ ℤ → ( 𝑥 + - 𝑥 ) = ( - 𝑥 + 𝑥 ) ) |
| 17 | 5 | negidd | ⊢ ( 𝑥 ∈ ℤ → ( 𝑥 + - 𝑥 ) = 0 ) |
| 18 | 16 17 | eqtr3d | ⊢ ( 𝑥 ∈ ℤ → ( - 𝑥 + 𝑥 ) = 0 ) |
| 19 | 2 3 1 4 9 10 11 12 18 | isgrpix | ⊢ 𝐺 ∈ Grp |
| 20 | 2 3 1 | grpbasex | ⊢ ℤ = ( Base ‘ 𝐺 ) |
| 21 | 2 3 1 | grpplusgx | ⊢ + = ( +g ‘ 𝐺 ) |
| 22 | addcom | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) | |
| 23 | 5 6 22 | syl2an | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
| 24 | 19 20 21 23 | isabli | ⊢ 𝐺 ∈ Abel |