This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integers are an Abelian group under addition. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use. Use zsubrg instead. (New usage is discouraged.) (Contributed by NM, 4-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zaddablx.g | |- G = { <. 1 , ZZ >. , <. 2 , + >. } |
|
| Assertion | zaddablx | |- G e. Abel |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zaddablx.g | |- G = { <. 1 , ZZ >. , <. 2 , + >. } |
|
| 2 | zex | |- ZZ e. _V |
|
| 3 | addex | |- + e. _V |
|
| 4 | zaddcl | |- ( ( x e. ZZ /\ y e. ZZ ) -> ( x + y ) e. ZZ ) |
|
| 5 | zcn | |- ( x e. ZZ -> x e. CC ) |
|
| 6 | zcn | |- ( y e. ZZ -> y e. CC ) |
|
| 7 | zcn | |- ( z e. ZZ -> z e. CC ) |
|
| 8 | addass | |- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x + y ) + z ) = ( x + ( y + z ) ) ) |
|
| 9 | 5 6 7 8 | syl3an | |- ( ( x e. ZZ /\ y e. ZZ /\ z e. ZZ ) -> ( ( x + y ) + z ) = ( x + ( y + z ) ) ) |
| 10 | 0z | |- 0 e. ZZ |
|
| 11 | 5 | addlidd | |- ( x e. ZZ -> ( 0 + x ) = x ) |
| 12 | znegcl | |- ( x e. ZZ -> -u x e. ZZ ) |
|
| 13 | zcn | |- ( -u x e. ZZ -> -u x e. CC ) |
|
| 14 | addcom | |- ( ( x e. CC /\ -u x e. CC ) -> ( x + -u x ) = ( -u x + x ) ) |
|
| 15 | 5 13 14 | syl2an | |- ( ( x e. ZZ /\ -u x e. ZZ ) -> ( x + -u x ) = ( -u x + x ) ) |
| 16 | 12 15 | mpdan | |- ( x e. ZZ -> ( x + -u x ) = ( -u x + x ) ) |
| 17 | 5 | negidd | |- ( x e. ZZ -> ( x + -u x ) = 0 ) |
| 18 | 16 17 | eqtr3d | |- ( x e. ZZ -> ( -u x + x ) = 0 ) |
| 19 | 2 3 1 4 9 10 11 12 18 | isgrpix | |- G e. Grp |
| 20 | 2 3 1 | grpbasex | |- ZZ = ( Base ` G ) |
| 21 | 2 3 1 | grpplusgx | |- + = ( +g ` G ) |
| 22 | addcom | |- ( ( x e. CC /\ y e. CC ) -> ( x + y ) = ( y + x ) ) |
|
| 23 | 5 6 22 | syl2an | |- ( ( x e. ZZ /\ y e. ZZ ) -> ( x + y ) = ( y + x ) ) |
| 24 | 19 20 21 23 | isabli | |- G e. Abel |