This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integers are an Abelian group under addition. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use. Use zsubrg instead. (New usage is discouraged.) (Contributed by NM, 4-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zaddablx.g | ||
| Assertion | zaddablx |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zaddablx.g | ||
| 2 | zex | ||
| 3 | addex | ||
| 4 | zaddcl | ||
| 5 | zcn | ||
| 6 | zcn | ||
| 7 | zcn | ||
| 8 | addass | ||
| 9 | 5 6 7 8 | syl3an | |
| 10 | 0z | ||
| 11 | 5 | addlidd | |
| 12 | znegcl | ||
| 13 | zcn | ||
| 14 | addcom | ||
| 15 | 5 13 14 | syl2an | |
| 16 | 12 15 | mpdan | |
| 17 | 5 | negidd | |
| 18 | 16 17 | eqtr3d | |
| 19 | 2 3 1 4 9 10 11 12 18 | isgrpix | |
| 20 | 2 3 1 | grpbasex | |
| 21 | 2 3 1 | grpplusgx | |
| 22 | addcom | ||
| 23 | 5 6 22 | syl2an | |
| 24 | 19 20 21 23 | isabli |