This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A way of proving that an extended real is real. (Contributed by FL, 29-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrre3 | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐵 ≤ 𝐴 ∧ 𝐴 < +∞ ) ) → 𝐴 ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnflt | ⊢ ( 𝐵 ∈ ℝ → -∞ < 𝐵 ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → -∞ < 𝐵 ) |
| 3 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 4 | rexr | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ* ) |
| 6 | simpl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ* ) | |
| 7 | xrltletr | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( ( -∞ < 𝐵 ∧ 𝐵 ≤ 𝐴 ) → -∞ < 𝐴 ) ) | |
| 8 | 3 5 6 7 | mp3an2i | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ( -∞ < 𝐵 ∧ 𝐵 ≤ 𝐴 ) → -∞ < 𝐴 ) ) |
| 9 | 2 8 | mpand | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐵 ≤ 𝐴 → -∞ < 𝐴 ) ) |
| 10 | 9 | imp | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ≤ 𝐴 ) → -∞ < 𝐴 ) |
| 11 | 10 | adantrr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐵 ≤ 𝐴 ∧ 𝐴 < +∞ ) ) → -∞ < 𝐴 ) |
| 12 | simprr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐵 ≤ 𝐴 ∧ 𝐴 < +∞ ) ) → 𝐴 < +∞ ) | |
| 13 | xrrebnd | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 ∈ ℝ ↔ ( -∞ < 𝐴 ∧ 𝐴 < +∞ ) ) ) | |
| 14 | 13 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐵 ≤ 𝐴 ∧ 𝐴 < +∞ ) ) → ( 𝐴 ∈ ℝ ↔ ( -∞ < 𝐴 ∧ 𝐴 < +∞ ) ) ) |
| 15 | 11 12 14 | mpbir2and | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐵 ≤ 𝐴 ∧ 𝐴 < +∞ ) ) → 𝐴 ∈ ℝ ) |