This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A way of proving that an extended real is real. (Contributed by FL, 29-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrre3 | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( B <_ A /\ A < +oo ) ) -> A e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnflt | |- ( B e. RR -> -oo < B ) |
|
| 2 | 1 | adantl | |- ( ( A e. RR* /\ B e. RR ) -> -oo < B ) |
| 3 | mnfxr | |- -oo e. RR* |
|
| 4 | rexr | |- ( B e. RR -> B e. RR* ) |
|
| 5 | 4 | adantl | |- ( ( A e. RR* /\ B e. RR ) -> B e. RR* ) |
| 6 | simpl | |- ( ( A e. RR* /\ B e. RR ) -> A e. RR* ) |
|
| 7 | xrltletr | |- ( ( -oo e. RR* /\ B e. RR* /\ A e. RR* ) -> ( ( -oo < B /\ B <_ A ) -> -oo < A ) ) |
|
| 8 | 3 5 6 7 | mp3an2i | |- ( ( A e. RR* /\ B e. RR ) -> ( ( -oo < B /\ B <_ A ) -> -oo < A ) ) |
| 9 | 2 8 | mpand | |- ( ( A e. RR* /\ B e. RR ) -> ( B <_ A -> -oo < A ) ) |
| 10 | 9 | imp | |- ( ( ( A e. RR* /\ B e. RR ) /\ B <_ A ) -> -oo < A ) |
| 11 | 10 | adantrr | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( B <_ A /\ A < +oo ) ) -> -oo < A ) |
| 12 | simprr | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( B <_ A /\ A < +oo ) ) -> A < +oo ) |
|
| 13 | xrrebnd | |- ( A e. RR* -> ( A e. RR <-> ( -oo < A /\ A < +oo ) ) ) |
|
| 14 | 13 | ad2antrr | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( B <_ A /\ A < +oo ) ) -> ( A e. RR <-> ( -oo < A /\ A < +oo ) ) ) |
| 15 | 11 12 14 | mpbir2and | |- ( ( ( A e. RR* /\ B e. RR ) /\ ( B <_ A /\ A < +oo ) ) -> A e. RR ) |