This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An extended real other than plus infinity is real or negative infinite. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrnepnf | |- ( ( A e. RR* /\ A =/= +oo ) <-> ( A e. RR \/ A = -oo ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.61 | |- ( ( ( ( A e. RR \/ A = -oo ) \/ A = +oo ) /\ -. A = +oo ) <-> ( ( A e. RR \/ A = -oo ) /\ -. A = +oo ) ) |
|
| 2 | elxr | |- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
|
| 3 | df-3or | |- ( ( A e. RR \/ A = +oo \/ A = -oo ) <-> ( ( A e. RR \/ A = +oo ) \/ A = -oo ) ) |
|
| 4 | or32 | |- ( ( ( A e. RR \/ A = +oo ) \/ A = -oo ) <-> ( ( A e. RR \/ A = -oo ) \/ A = +oo ) ) |
|
| 5 | 2 3 4 | 3bitri | |- ( A e. RR* <-> ( ( A e. RR \/ A = -oo ) \/ A = +oo ) ) |
| 6 | df-ne | |- ( A =/= +oo <-> -. A = +oo ) |
|
| 7 | 5 6 | anbi12i | |- ( ( A e. RR* /\ A =/= +oo ) <-> ( ( ( A e. RR \/ A = -oo ) \/ A = +oo ) /\ -. A = +oo ) ) |
| 8 | renepnf | |- ( A e. RR -> A =/= +oo ) |
|
| 9 | mnfnepnf | |- -oo =/= +oo |
|
| 10 | neeq1 | |- ( A = -oo -> ( A =/= +oo <-> -oo =/= +oo ) ) |
|
| 11 | 9 10 | mpbiri | |- ( A = -oo -> A =/= +oo ) |
| 12 | 8 11 | jaoi | |- ( ( A e. RR \/ A = -oo ) -> A =/= +oo ) |
| 13 | 12 | neneqd | |- ( ( A e. RR \/ A = -oo ) -> -. A = +oo ) |
| 14 | 13 | pm4.71i | |- ( ( A e. RR \/ A = -oo ) <-> ( ( A e. RR \/ A = -oo ) /\ -. A = +oo ) ) |
| 15 | 1 7 14 | 3bitr4i | |- ( ( A e. RR* /\ A =/= +oo ) <-> ( A e. RR \/ A = -oo ) ) |