This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base of the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 30-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrge0base | ⊢ ( 0 [,] +∞ ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssxr | ⊢ ( 0 [,] +∞ ) ⊆ ℝ* | |
| 2 | dfss2 | ⊢ ( ( 0 [,] +∞ ) ⊆ ℝ* ↔ ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( 0 [,] +∞ ) ) | |
| 3 | 1 2 | mpbi | ⊢ ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( 0 [,] +∞ ) |
| 4 | ovex | ⊢ ( 0 [,] +∞ ) ∈ V | |
| 5 | eqid | ⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) | |
| 6 | xrsbas | ⊢ ℝ* = ( Base ‘ ℝ*𝑠 ) | |
| 7 | 5 6 | ressbas | ⊢ ( ( 0 [,] +∞ ) ∈ V → ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) ) |
| 8 | 4 7 | ax-mp | ⊢ ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 9 | 3 8 | eqtr3i | ⊢ ( 0 [,] +∞ ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |