This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine a poset (implicit structure version). (Contributed by NM, 11-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isposi.k | ⊢ 𝐾 ∈ V | |
| isposi.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | ||
| isposi.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| isposi.1 | ⊢ ( 𝑥 ∈ 𝐵 → 𝑥 ≤ 𝑥 ) | ||
| isposi.2 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ) | ||
| isposi.3 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) | ||
| Assertion | isposi | ⊢ 𝐾 ∈ Poset |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isposi.k | ⊢ 𝐾 ∈ V | |
| 2 | isposi.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 3 | isposi.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 4 | isposi.1 | ⊢ ( 𝑥 ∈ 𝐵 → 𝑥 ≤ 𝑥 ) | |
| 5 | isposi.2 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ) | |
| 6 | isposi.3 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) | |
| 7 | 4 | 3ad2ant1 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → 𝑥 ≤ 𝑥 ) |
| 8 | 5 | 3adant3 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 9 | 7 8 6 | 3jca | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑥 ≤ 𝑥 ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) |
| 10 | 9 | rgen3 | ⊢ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑥 ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) |
| 11 | 2 3 | ispos | ⊢ ( 𝐾 ∈ Poset ↔ ( 𝐾 ∈ V ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑥 ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) ) |
| 12 | 1 10 11 | mpbir2an | ⊢ 𝐾 ∈ Poset |