This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity element of a binary product of monoids. (Contributed by AV, 25-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xpsmnd0.t | ⊢ 𝑇 = ( 𝑅 ×s 𝑆 ) | |
| Assertion | xpsmnd0 | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( 0g ‘ 𝑇 ) = 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsmnd0.t | ⊢ 𝑇 = ( 𝑅 ×s 𝑆 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 3 | eqid | ⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) | |
| 4 | eqid | ⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 6 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 7 | 5 6 | mndidcl | ⊢ ( 𝑅 ∈ Mnd → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 9 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 10 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 11 | 9 10 | mndidcl | ⊢ ( 𝑆 ∈ Mnd → ( 0g ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
| 12 | 11 | adantl | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( 0g ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
| 13 | 8 12 | opelxpd | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ∈ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) ) |
| 14 | simpl | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → 𝑅 ∈ Mnd ) | |
| 15 | simpr | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → 𝑆 ∈ Mnd ) | |
| 16 | 1 5 9 14 15 | xpsbas | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) = ( Base ‘ 𝑇 ) ) |
| 17 | 13 16 | eleqtrd | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ∈ ( Base ‘ 𝑇 ) ) |
| 18 | 16 | eleq2d | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) ↔ 𝑥 ∈ ( Base ‘ 𝑇 ) ) ) |
| 19 | elxp2 | ⊢ ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) ↔ ∃ 𝑎 ∈ ( Base ‘ 𝑅 ) ∃ 𝑏 ∈ ( Base ‘ 𝑆 ) 𝑥 = 〈 𝑎 , 𝑏 〉 ) | |
| 20 | 14 | adantr | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑅 ∈ Mnd ) |
| 21 | 15 | adantr | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑆 ∈ Mnd ) |
| 22 | 8 | adantr | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 23 | 12 | adantr | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → ( 0g ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
| 24 | simpl | ⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) | |
| 25 | 24 | adantl | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) |
| 26 | simpr | ⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) → 𝑏 ∈ ( Base ‘ 𝑆 ) ) | |
| 27 | 26 | adantl | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑏 ∈ ( Base ‘ 𝑆 ) ) |
| 28 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 29 | 5 28 | mndcl | ⊢ ( ( 𝑅 ∈ Mnd ∧ ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑎 ) ∈ ( Base ‘ 𝑅 ) ) |
| 30 | 20 22 25 29 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑎 ) ∈ ( Base ‘ 𝑅 ) ) |
| 31 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 32 | 9 31 | mndcl | ⊢ ( ( 𝑆 ∈ Mnd ∧ ( 0g ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) → ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( Base ‘ 𝑆 ) ) |
| 33 | 21 23 27 32 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( Base ‘ 𝑆 ) ) |
| 34 | 1 5 9 20 21 22 23 25 27 30 33 28 31 4 | xpsadd | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → ( 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 〈 𝑎 , 𝑏 〉 ) = 〈 ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑎 ) , ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑏 ) 〉 ) |
| 35 | 5 28 6 | mndlid | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑎 ) = 𝑎 ) |
| 36 | 14 24 35 | syl2an | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑎 ) = 𝑎 ) |
| 37 | 9 31 10 | mndlid | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) → ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑏 ) = 𝑏 ) |
| 38 | 15 26 37 | syl2an | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑏 ) = 𝑏 ) |
| 39 | 36 38 | opeq12d | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → 〈 ( ( 0g ‘ 𝑅 ) ( +g ‘ 𝑅 ) 𝑎 ) , ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑏 ) 〉 = 〈 𝑎 , 𝑏 〉 ) |
| 40 | 34 39 | eqtrd | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → ( 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 〈 𝑎 , 𝑏 〉 ) = 〈 𝑎 , 𝑏 〉 ) |
| 41 | oveq2 | ⊢ ( 𝑥 = 〈 𝑎 , 𝑏 〉 → ( 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 𝑥 ) = ( 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 〈 𝑎 , 𝑏 〉 ) ) | |
| 42 | id | ⊢ ( 𝑥 = 〈 𝑎 , 𝑏 〉 → 𝑥 = 〈 𝑎 , 𝑏 〉 ) | |
| 43 | 41 42 | eqeq12d | ⊢ ( 𝑥 = 〈 𝑎 , 𝑏 〉 → ( ( 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 𝑥 ) = 𝑥 ↔ ( 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 〈 𝑎 , 𝑏 〉 ) = 〈 𝑎 , 𝑏 〉 ) ) |
| 44 | 40 43 | syl5ibrcom | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 = 〈 𝑎 , 𝑏 〉 → ( 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 𝑥 ) = 𝑥 ) ) |
| 45 | 44 | rexlimdvva | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( ∃ 𝑎 ∈ ( Base ‘ 𝑅 ) ∃ 𝑏 ∈ ( Base ‘ 𝑆 ) 𝑥 = 〈 𝑎 , 𝑏 〉 → ( 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 𝑥 ) = 𝑥 ) ) |
| 46 | 19 45 | biimtrid | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) → ( 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 𝑥 ) = 𝑥 ) ) |
| 47 | 18 46 | sylbird | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( 𝑥 ∈ ( Base ‘ 𝑇 ) → ( 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 𝑥 ) = 𝑥 ) ) |
| 48 | 47 | imp | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ 𝑥 ∈ ( Base ‘ 𝑇 ) ) → ( 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ( +g ‘ 𝑇 ) 𝑥 ) = 𝑥 ) |
| 49 | 5 28 | mndcl | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝑎 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 50 | 20 25 22 49 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑎 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 51 | 9 31 | mndcl | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ ( 0g ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) → ( 𝑏 ( +g ‘ 𝑆 ) ( 0g ‘ 𝑆 ) ) ∈ ( Base ‘ 𝑆 ) ) |
| 52 | 21 27 23 51 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑏 ( +g ‘ 𝑆 ) ( 0g ‘ 𝑆 ) ) ∈ ( Base ‘ 𝑆 ) ) |
| 53 | 1 5 9 20 21 25 27 22 23 50 52 28 31 4 | xpsadd | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → ( 〈 𝑎 , 𝑏 〉 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ) = 〈 ( 𝑎 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) , ( 𝑏 ( +g ‘ 𝑆 ) ( 0g ‘ 𝑆 ) ) 〉 ) |
| 54 | 5 28 6 | mndrid | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑎 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = 𝑎 ) |
| 55 | 14 24 54 | syl2an | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑎 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = 𝑎 ) |
| 56 | 9 31 10 | mndrid | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑏 ( +g ‘ 𝑆 ) ( 0g ‘ 𝑆 ) ) = 𝑏 ) |
| 57 | 15 26 56 | syl2an | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑏 ( +g ‘ 𝑆 ) ( 0g ‘ 𝑆 ) ) = 𝑏 ) |
| 58 | 55 57 | opeq12d | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → 〈 ( 𝑎 ( +g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) , ( 𝑏 ( +g ‘ 𝑆 ) ( 0g ‘ 𝑆 ) ) 〉 = 〈 𝑎 , 𝑏 〉 ) |
| 59 | 53 58 | eqtrd | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → ( 〈 𝑎 , 𝑏 〉 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ) = 〈 𝑎 , 𝑏 〉 ) |
| 60 | oveq1 | ⊢ ( 𝑥 = 〈 𝑎 , 𝑏 〉 → ( 𝑥 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ) = ( 〈 𝑎 , 𝑏 〉 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ) ) | |
| 61 | 60 42 | eqeq12d | ⊢ ( 𝑥 = 〈 𝑎 , 𝑏 〉 → ( ( 𝑥 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ) = 𝑥 ↔ ( 〈 𝑎 , 𝑏 〉 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ) = 〈 𝑎 , 𝑏 〉 ) ) |
| 62 | 59 61 | syl5ibrcom | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 = 〈 𝑎 , 𝑏 〉 → ( 𝑥 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ) = 𝑥 ) ) |
| 63 | 62 | rexlimdvva | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( ∃ 𝑎 ∈ ( Base ‘ 𝑅 ) ∃ 𝑏 ∈ ( Base ‘ 𝑆 ) 𝑥 = 〈 𝑎 , 𝑏 〉 → ( 𝑥 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ) = 𝑥 ) ) |
| 64 | 19 63 | biimtrid | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ) = 𝑥 ) ) |
| 65 | 18 64 | sylbird | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( 𝑥 ∈ ( Base ‘ 𝑇 ) → ( 𝑥 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ) = 𝑥 ) ) |
| 66 | 65 | imp | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ 𝑥 ∈ ( Base ‘ 𝑇 ) ) → ( 𝑥 ( +g ‘ 𝑇 ) 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ) = 𝑥 ) |
| 67 | 2 3 4 17 48 66 | ismgmid2 | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 = ( 0g ‘ 𝑇 ) ) |
| 68 | 67 | eqcomd | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd ) → ( 0g ‘ 𝑇 ) = 〈 ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑆 ) 〉 ) |