This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the subtraction operation in a binary structure product of groups. (Contributed by AV, 24-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpsinv.t | ⊢ 𝑇 = ( 𝑅 ×s 𝑆 ) | |
| xpsinv.x | ⊢ 𝑋 = ( Base ‘ 𝑅 ) | ||
| xpsinv.y | ⊢ 𝑌 = ( Base ‘ 𝑆 ) | ||
| xpsinv.r | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) | ||
| xpsinv.s | ⊢ ( 𝜑 → 𝑆 ∈ Grp ) | ||
| xpsinv.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| xpsinv.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑌 ) | ||
| xpsgrpsub.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | ||
| xpsgrpsub.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑌 ) | ||
| xpsgrpsub.m | ⊢ · = ( -g ‘ 𝑅 ) | ||
| xpsgrpsub.n | ⊢ × = ( -g ‘ 𝑆 ) | ||
| xpsgrpsub.o | ⊢ − = ( -g ‘ 𝑇 ) | ||
| Assertion | xpsgrpsub | ⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 − 〈 𝐶 , 𝐷 〉 ) = 〈 ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsinv.t | ⊢ 𝑇 = ( 𝑅 ×s 𝑆 ) | |
| 2 | xpsinv.x | ⊢ 𝑋 = ( Base ‘ 𝑅 ) | |
| 3 | xpsinv.y | ⊢ 𝑌 = ( Base ‘ 𝑆 ) | |
| 4 | xpsinv.r | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) | |
| 5 | xpsinv.s | ⊢ ( 𝜑 → 𝑆 ∈ Grp ) | |
| 6 | xpsinv.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 7 | xpsinv.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑌 ) | |
| 8 | xpsgrpsub.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | |
| 9 | xpsgrpsub.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑌 ) | |
| 10 | xpsgrpsub.m | ⊢ · = ( -g ‘ 𝑅 ) | |
| 11 | xpsgrpsub.n | ⊢ × = ( -g ‘ 𝑆 ) | |
| 12 | xpsgrpsub.o | ⊢ − = ( -g ‘ 𝑇 ) | |
| 13 | 2 10 | grpsubcl | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 · 𝐶 ) ∈ 𝑋 ) |
| 14 | 4 6 8 13 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 · 𝐶 ) ∈ 𝑋 ) |
| 15 | 3 11 | grpsubcl | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝐵 ∈ 𝑌 ∧ 𝐷 ∈ 𝑌 ) → ( 𝐵 × 𝐷 ) ∈ 𝑌 ) |
| 16 | 5 7 9 15 | syl3anc | ⊢ ( 𝜑 → ( 𝐵 × 𝐷 ) ∈ 𝑌 ) |
| 17 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 18 | 2 17 4 14 8 | grpcld | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐶 ) ( +g ‘ 𝑅 ) 𝐶 ) ∈ 𝑋 ) |
| 19 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 20 | 3 19 5 16 9 | grpcld | ⊢ ( 𝜑 → ( ( 𝐵 × 𝐷 ) ( +g ‘ 𝑆 ) 𝐷 ) ∈ 𝑌 ) |
| 21 | eqid | ⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) | |
| 22 | 1 2 3 4 5 14 16 8 9 18 20 17 19 21 | xpsadd | ⊢ ( 𝜑 → ( 〈 ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) 〉 ( +g ‘ 𝑇 ) 〈 𝐶 , 𝐷 〉 ) = 〈 ( ( 𝐴 · 𝐶 ) ( +g ‘ 𝑅 ) 𝐶 ) , ( ( 𝐵 × 𝐷 ) ( +g ‘ 𝑆 ) 𝐷 ) 〉 ) |
| 23 | 2 17 10 | grpnpcan | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 · 𝐶 ) ( +g ‘ 𝑅 ) 𝐶 ) = 𝐴 ) |
| 24 | 4 6 8 23 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐶 ) ( +g ‘ 𝑅 ) 𝐶 ) = 𝐴 ) |
| 25 | 3 19 11 | grpnpcan | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝐵 ∈ 𝑌 ∧ 𝐷 ∈ 𝑌 ) → ( ( 𝐵 × 𝐷 ) ( +g ‘ 𝑆 ) 𝐷 ) = 𝐵 ) |
| 26 | 5 7 9 25 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐵 × 𝐷 ) ( +g ‘ 𝑆 ) 𝐷 ) = 𝐵 ) |
| 27 | 24 26 | opeq12d | ⊢ ( 𝜑 → 〈 ( ( 𝐴 · 𝐶 ) ( +g ‘ 𝑅 ) 𝐶 ) , ( ( 𝐵 × 𝐷 ) ( +g ‘ 𝑆 ) 𝐷 ) 〉 = 〈 𝐴 , 𝐵 〉 ) |
| 28 | 22 27 | eqtrd | ⊢ ( 𝜑 → ( 〈 ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) 〉 ( +g ‘ 𝑇 ) 〈 𝐶 , 𝐷 〉 ) = 〈 𝐴 , 𝐵 〉 ) |
| 29 | 1 | xpsgrp | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑆 ∈ Grp ) → 𝑇 ∈ Grp ) |
| 30 | 4 5 29 | syl2anc | ⊢ ( 𝜑 → 𝑇 ∈ Grp ) |
| 31 | 6 7 | opelxpd | ⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 32 | 1 2 3 4 5 | xpsbas | ⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) = ( Base ‘ 𝑇 ) ) |
| 33 | 31 32 | eleqtrd | ⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 ∈ ( Base ‘ 𝑇 ) ) |
| 34 | 8 9 | opelxpd | ⊢ ( 𝜑 → 〈 𝐶 , 𝐷 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 35 | 34 32 | eleqtrd | ⊢ ( 𝜑 → 〈 𝐶 , 𝐷 〉 ∈ ( Base ‘ 𝑇 ) ) |
| 36 | 14 16 | opelxpd | ⊢ ( 𝜑 → 〈 ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 37 | 36 32 | eleqtrd | ⊢ ( 𝜑 → 〈 ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) 〉 ∈ ( Base ‘ 𝑇 ) ) |
| 38 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 39 | 38 21 12 | grpsubadd | ⊢ ( ( 𝑇 ∈ Grp ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( Base ‘ 𝑇 ) ∧ 〈 𝐶 , 𝐷 〉 ∈ ( Base ‘ 𝑇 ) ∧ 〈 ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) 〉 ∈ ( Base ‘ 𝑇 ) ) ) → ( ( 〈 𝐴 , 𝐵 〉 − 〈 𝐶 , 𝐷 〉 ) = 〈 ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) 〉 ↔ ( 〈 ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) 〉 ( +g ‘ 𝑇 ) 〈 𝐶 , 𝐷 〉 ) = 〈 𝐴 , 𝐵 〉 ) ) |
| 40 | 30 33 35 37 39 | syl13anc | ⊢ ( 𝜑 → ( ( 〈 𝐴 , 𝐵 〉 − 〈 𝐶 , 𝐷 〉 ) = 〈 ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) 〉 ↔ ( 〈 ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) 〉 ( +g ‘ 𝑇 ) 〈 𝐶 , 𝐷 〉 ) = 〈 𝐴 , 𝐵 〉 ) ) |
| 41 | 28 40 | mpbird | ⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 − 〈 𝐶 , 𝐷 〉 ) = 〈 ( 𝐴 · 𝐶 ) , ( 𝐵 × 𝐷 ) 〉 ) |