This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cartesian product of numerable sets is numerable. (Contributed by Mario Carneiro, 3-Mar-2013) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpnum | |- ( ( A e. dom card /\ B e. dom card ) -> ( A X. B ) e. dom card ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnum2 | |- ( A e. dom card <-> E. x e. On x ~~ A ) |
|
| 2 | isnum2 | |- ( B e. dom card <-> E. y e. On y ~~ B ) |
|
| 3 | reeanv | |- ( E. x e. On E. y e. On ( x ~~ A /\ y ~~ B ) <-> ( E. x e. On x ~~ A /\ E. y e. On y ~~ B ) ) |
|
| 4 | omcl | |- ( ( x e. On /\ y e. On ) -> ( x .o y ) e. On ) |
|
| 5 | omxpen | |- ( ( x e. On /\ y e. On ) -> ( x .o y ) ~~ ( x X. y ) ) |
|
| 6 | xpen | |- ( ( x ~~ A /\ y ~~ B ) -> ( x X. y ) ~~ ( A X. B ) ) |
|
| 7 | entr | |- ( ( ( x .o y ) ~~ ( x X. y ) /\ ( x X. y ) ~~ ( A X. B ) ) -> ( x .o y ) ~~ ( A X. B ) ) |
|
| 8 | 5 6 7 | syl2an | |- ( ( ( x e. On /\ y e. On ) /\ ( x ~~ A /\ y ~~ B ) ) -> ( x .o y ) ~~ ( A X. B ) ) |
| 9 | isnumi | |- ( ( ( x .o y ) e. On /\ ( x .o y ) ~~ ( A X. B ) ) -> ( A X. B ) e. dom card ) |
|
| 10 | 4 8 9 | syl2an2r | |- ( ( ( x e. On /\ y e. On ) /\ ( x ~~ A /\ y ~~ B ) ) -> ( A X. B ) e. dom card ) |
| 11 | 10 | ex | |- ( ( x e. On /\ y e. On ) -> ( ( x ~~ A /\ y ~~ B ) -> ( A X. B ) e. dom card ) ) |
| 12 | 11 | rexlimivv | |- ( E. x e. On E. y e. On ( x ~~ A /\ y ~~ B ) -> ( A X. B ) e. dom card ) |
| 13 | 3 12 | sylbir | |- ( ( E. x e. On x ~~ A /\ E. y e. On y ~~ B ) -> ( A X. B ) e. dom card ) |
| 14 | 1 2 13 | syl2anb | |- ( ( A e. dom card /\ B e. dom card ) -> ( A X. B ) e. dom card ) |