This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate definition of the value of ( cardA ) that does not require AC to prove. (Contributed by Mario Carneiro, 7-Jan-2013) (Revised by Mario Carneiro, 27-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cardval3 | ⊢ ( 𝐴 ∈ dom card → ( card ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ 𝑥 ≈ 𝐴 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐴 ∈ dom card → 𝐴 ∈ V ) | |
| 2 | isnum2 | ⊢ ( 𝐴 ∈ dom card ↔ ∃ 𝑥 ∈ On 𝑥 ≈ 𝐴 ) | |
| 3 | rabn0 | ⊢ ( { 𝑥 ∈ On ∣ 𝑥 ≈ 𝐴 } ≠ ∅ ↔ ∃ 𝑥 ∈ On 𝑥 ≈ 𝐴 ) | |
| 4 | intex | ⊢ ( { 𝑥 ∈ On ∣ 𝑥 ≈ 𝐴 } ≠ ∅ ↔ ∩ { 𝑥 ∈ On ∣ 𝑥 ≈ 𝐴 } ∈ V ) | |
| 5 | 2 3 4 | 3bitr2i | ⊢ ( 𝐴 ∈ dom card ↔ ∩ { 𝑥 ∈ On ∣ 𝑥 ≈ 𝐴 } ∈ V ) |
| 6 | 5 | biimpi | ⊢ ( 𝐴 ∈ dom card → ∩ { 𝑥 ∈ On ∣ 𝑥 ≈ 𝐴 } ∈ V ) |
| 7 | breq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝑥 ≈ 𝑦 ↔ 𝑥 ≈ 𝐴 ) ) | |
| 8 | 7 | rabbidv | ⊢ ( 𝑦 = 𝐴 → { 𝑥 ∈ On ∣ 𝑥 ≈ 𝑦 } = { 𝑥 ∈ On ∣ 𝑥 ≈ 𝐴 } ) |
| 9 | 8 | inteqd | ⊢ ( 𝑦 = 𝐴 → ∩ { 𝑥 ∈ On ∣ 𝑥 ≈ 𝑦 } = ∩ { 𝑥 ∈ On ∣ 𝑥 ≈ 𝐴 } ) |
| 10 | df-card | ⊢ card = ( 𝑦 ∈ V ↦ ∩ { 𝑥 ∈ On ∣ 𝑥 ≈ 𝑦 } ) | |
| 11 | 9 10 | fvmptg | ⊢ ( ( 𝐴 ∈ V ∧ ∩ { 𝑥 ∈ On ∣ 𝑥 ≈ 𝐴 } ∈ V ) → ( card ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ 𝑥 ≈ 𝐴 } ) |
| 12 | 1 6 11 | syl2anc | ⊢ ( 𝐴 ∈ dom card → ( card ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ 𝑥 ≈ 𝐴 } ) |