This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define multiplication over extended real numbers. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-xmul | ⊢ ·e = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ if ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) , 0 , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) , -∞ , ( 𝑥 · 𝑦 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cxmu | ⊢ ·e | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | cxr | ⊢ ℝ* | |
| 3 | vy | ⊢ 𝑦 | |
| 4 | 1 | cv | ⊢ 𝑥 |
| 5 | cc0 | ⊢ 0 | |
| 6 | 4 5 | wceq | ⊢ 𝑥 = 0 |
| 7 | 3 | cv | ⊢ 𝑦 |
| 8 | 7 5 | wceq | ⊢ 𝑦 = 0 |
| 9 | 6 8 | wo | ⊢ ( 𝑥 = 0 ∨ 𝑦 = 0 ) |
| 10 | clt | ⊢ < | |
| 11 | 5 7 10 | wbr | ⊢ 0 < 𝑦 |
| 12 | cpnf | ⊢ +∞ | |
| 13 | 4 12 | wceq | ⊢ 𝑥 = +∞ |
| 14 | 11 13 | wa | ⊢ ( 0 < 𝑦 ∧ 𝑥 = +∞ ) |
| 15 | 7 5 10 | wbr | ⊢ 𝑦 < 0 |
| 16 | cmnf | ⊢ -∞ | |
| 17 | 4 16 | wceq | ⊢ 𝑥 = -∞ |
| 18 | 15 17 | wa | ⊢ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) |
| 19 | 14 18 | wo | ⊢ ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) |
| 20 | 5 4 10 | wbr | ⊢ 0 < 𝑥 |
| 21 | 7 12 | wceq | ⊢ 𝑦 = +∞ |
| 22 | 20 21 | wa | ⊢ ( 0 < 𝑥 ∧ 𝑦 = +∞ ) |
| 23 | 4 5 10 | wbr | ⊢ 𝑥 < 0 |
| 24 | 7 16 | wceq | ⊢ 𝑦 = -∞ |
| 25 | 23 24 | wa | ⊢ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) |
| 26 | 22 25 | wo | ⊢ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) |
| 27 | 19 26 | wo | ⊢ ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) |
| 28 | 11 17 | wa | ⊢ ( 0 < 𝑦 ∧ 𝑥 = -∞ ) |
| 29 | 15 13 | wa | ⊢ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) |
| 30 | 28 29 | wo | ⊢ ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) |
| 31 | 20 24 | wa | ⊢ ( 0 < 𝑥 ∧ 𝑦 = -∞ ) |
| 32 | 23 21 | wa | ⊢ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) |
| 33 | 31 32 | wo | ⊢ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) |
| 34 | 30 33 | wo | ⊢ ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) |
| 35 | cmul | ⊢ · | |
| 36 | 4 7 35 | co | ⊢ ( 𝑥 · 𝑦 ) |
| 37 | 34 16 36 | cif | ⊢ if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) , -∞ , ( 𝑥 · 𝑦 ) ) |
| 38 | 27 12 37 | cif | ⊢ if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) , -∞ , ( 𝑥 · 𝑦 ) ) ) |
| 39 | 9 5 38 | cif | ⊢ if ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) , 0 , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) , -∞ , ( 𝑥 · 𝑦 ) ) ) ) |
| 40 | 1 3 2 2 39 | cmpo | ⊢ ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ if ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) , 0 , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) , -∞ , ( 𝑥 · 𝑦 ) ) ) ) ) |
| 41 | 0 40 | wceq | ⊢ ·e = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ if ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) , 0 , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) , -∞ , ( 𝑥 · 𝑦 ) ) ) ) ) |