This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of mulgt0 . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmulgt0 | |- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) -> 0 < ( A *e B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( A e. RR* /\ 0 < A ) -> 0 < A ) |
|
| 2 | simpr | |- ( ( B e. RR* /\ 0 < B ) -> 0 < B ) |
|
| 3 | 1 2 | anim12i | |- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) -> ( 0 < A /\ 0 < B ) ) |
| 4 | mulgt0 | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < ( A x. B ) ) |
|
| 5 | 4 | an4s | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 < A /\ 0 < B ) ) -> 0 < ( A x. B ) ) |
| 6 | 5 | ancoms | |- ( ( ( 0 < A /\ 0 < B ) /\ ( A e. RR /\ B e. RR ) ) -> 0 < ( A x. B ) ) |
| 7 | rexmul | |- ( ( A e. RR /\ B e. RR ) -> ( A *e B ) = ( A x. B ) ) |
|
| 8 | 7 | adantl | |- ( ( ( 0 < A /\ 0 < B ) /\ ( A e. RR /\ B e. RR ) ) -> ( A *e B ) = ( A x. B ) ) |
| 9 | 6 8 | breqtrrd | |- ( ( ( 0 < A /\ 0 < B ) /\ ( A e. RR /\ B e. RR ) ) -> 0 < ( A *e B ) ) |
| 10 | 3 9 | sylan | |- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ ( A e. RR /\ B e. RR ) ) -> 0 < ( A *e B ) ) |
| 11 | 10 | anassrs | |- ( ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ A e. RR ) /\ B e. RR ) -> 0 < ( A *e B ) ) |
| 12 | 0ltpnf | |- 0 < +oo |
|
| 13 | oveq2 | |- ( B = +oo -> ( A *e B ) = ( A *e +oo ) ) |
|
| 14 | xmulpnf1 | |- ( ( A e. RR* /\ 0 < A ) -> ( A *e +oo ) = +oo ) |
|
| 15 | 14 | adantr | |- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) -> ( A *e +oo ) = +oo ) |
| 16 | 13 15 | sylan9eqr | |- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ B = +oo ) -> ( A *e B ) = +oo ) |
| 17 | 12 16 | breqtrrid | |- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ B = +oo ) -> 0 < ( A *e B ) ) |
| 18 | 17 | adantlr | |- ( ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ A e. RR ) /\ B = +oo ) -> 0 < ( A *e B ) ) |
| 19 | simplrr | |- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ A e. RR ) -> 0 < B ) |
|
| 20 | xmulasslem2 | |- ( ( 0 < B /\ B = -oo ) -> 0 < ( A *e B ) ) |
|
| 21 | 19 20 | sylan | |- ( ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ A e. RR ) /\ B = -oo ) -> 0 < ( A *e B ) ) |
| 22 | simprl | |- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) -> B e. RR* ) |
|
| 23 | elxr | |- ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
|
| 24 | 22 23 | sylib | |- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) -> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
| 25 | 24 | adantr | |- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ A e. RR ) -> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
| 26 | 11 18 21 25 | mpjao3dan | |- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ A e. RR ) -> 0 < ( A *e B ) ) |
| 27 | oveq1 | |- ( A = +oo -> ( A *e B ) = ( +oo *e B ) ) |
|
| 28 | xmulpnf2 | |- ( ( B e. RR* /\ 0 < B ) -> ( +oo *e B ) = +oo ) |
|
| 29 | 28 | adantl | |- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) -> ( +oo *e B ) = +oo ) |
| 30 | 27 29 | sylan9eqr | |- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ A = +oo ) -> ( A *e B ) = +oo ) |
| 31 | 12 30 | breqtrrid | |- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ A = +oo ) -> 0 < ( A *e B ) ) |
| 32 | xmulasslem2 | |- ( ( 0 < A /\ A = -oo ) -> 0 < ( A *e B ) ) |
|
| 33 | 32 | ad4ant24 | |- ( ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) /\ A = -oo ) -> 0 < ( A *e B ) ) |
| 34 | simpll | |- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) -> A e. RR* ) |
|
| 35 | elxr | |- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
|
| 36 | 34 35 | sylib | |- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) -> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
| 37 | 26 31 33 36 | mpjao3dan | |- ( ( ( A e. RR* /\ 0 < A ) /\ ( B e. RR* /\ 0 < B ) ) -> 0 < ( A *e B ) ) |