This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xkoval.x | |- X = U. R |
|
| xkoval.k | |- K = { x e. ~P X | ( R |`t x ) e. Comp } |
||
| xkoval.t | |- T = ( k e. K , v e. S |-> { f e. ( R Cn S ) | ( f " k ) C_ v } ) |
||
| Assertion | xkoval | |- ( ( R e. Top /\ S e. Top ) -> ( S ^ko R ) = ( topGen ` ( fi ` ran T ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xkoval.x | |- X = U. R |
|
| 2 | xkoval.k | |- K = { x e. ~P X | ( R |`t x ) e. Comp } |
|
| 3 | xkoval.t | |- T = ( k e. K , v e. S |-> { f e. ( R Cn S ) | ( f " k ) C_ v } ) |
|
| 4 | simpr | |- ( ( s = S /\ r = R ) -> r = R ) |
|
| 5 | 4 | unieqd | |- ( ( s = S /\ r = R ) -> U. r = U. R ) |
| 6 | 5 1 | eqtr4di | |- ( ( s = S /\ r = R ) -> U. r = X ) |
| 7 | 6 | pweqd | |- ( ( s = S /\ r = R ) -> ~P U. r = ~P X ) |
| 8 | 4 | oveq1d | |- ( ( s = S /\ r = R ) -> ( r |`t x ) = ( R |`t x ) ) |
| 9 | 8 | eleq1d | |- ( ( s = S /\ r = R ) -> ( ( r |`t x ) e. Comp <-> ( R |`t x ) e. Comp ) ) |
| 10 | 7 9 | rabeqbidv | |- ( ( s = S /\ r = R ) -> { x e. ~P U. r | ( r |`t x ) e. Comp } = { x e. ~P X | ( R |`t x ) e. Comp } ) |
| 11 | 10 2 | eqtr4di | |- ( ( s = S /\ r = R ) -> { x e. ~P U. r | ( r |`t x ) e. Comp } = K ) |
| 12 | simpl | |- ( ( s = S /\ r = R ) -> s = S ) |
|
| 13 | 4 12 | oveq12d | |- ( ( s = S /\ r = R ) -> ( r Cn s ) = ( R Cn S ) ) |
| 14 | 13 | rabeqdv | |- ( ( s = S /\ r = R ) -> { f e. ( r Cn s ) | ( f " k ) C_ v } = { f e. ( R Cn S ) | ( f " k ) C_ v } ) |
| 15 | 11 12 14 | mpoeq123dv | |- ( ( s = S /\ r = R ) -> ( k e. { x e. ~P U. r | ( r |`t x ) e. Comp } , v e. s |-> { f e. ( r Cn s ) | ( f " k ) C_ v } ) = ( k e. K , v e. S |-> { f e. ( R Cn S ) | ( f " k ) C_ v } ) ) |
| 16 | 15 3 | eqtr4di | |- ( ( s = S /\ r = R ) -> ( k e. { x e. ~P U. r | ( r |`t x ) e. Comp } , v e. s |-> { f e. ( r Cn s ) | ( f " k ) C_ v } ) = T ) |
| 17 | 16 | rneqd | |- ( ( s = S /\ r = R ) -> ran ( k e. { x e. ~P U. r | ( r |`t x ) e. Comp } , v e. s |-> { f e. ( r Cn s ) | ( f " k ) C_ v } ) = ran T ) |
| 18 | 17 | fveq2d | |- ( ( s = S /\ r = R ) -> ( fi ` ran ( k e. { x e. ~P U. r | ( r |`t x ) e. Comp } , v e. s |-> { f e. ( r Cn s ) | ( f " k ) C_ v } ) ) = ( fi ` ran T ) ) |
| 19 | 18 | fveq2d | |- ( ( s = S /\ r = R ) -> ( topGen ` ( fi ` ran ( k e. { x e. ~P U. r | ( r |`t x ) e. Comp } , v e. s |-> { f e. ( r Cn s ) | ( f " k ) C_ v } ) ) ) = ( topGen ` ( fi ` ran T ) ) ) |
| 20 | df-xko | |- ^ko = ( s e. Top , r e. Top |-> ( topGen ` ( fi ` ran ( k e. { x e. ~P U. r | ( r |`t x ) e. Comp } , v e. s |-> { f e. ( r Cn s ) | ( f " k ) C_ v } ) ) ) ) |
|
| 21 | fvex | |- ( topGen ` ( fi ` ran T ) ) e. _V |
|
| 22 | 19 20 21 | ovmpoa | |- ( ( S e. Top /\ R e. Top ) -> ( S ^ko R ) = ( topGen ` ( fi ` ran T ) ) ) |
| 23 | 22 | ancoms | |- ( ( R e. Top /\ S e. Top ) -> ( S ^ko R ) = ( topGen ` ( fi ` ran T ) ) ) |