This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the compact-open topology, which is the natural topology on the set of continuous functions between two topological spaces. (Contributed by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-xko | ⊢ ↑ko = ( 𝑠 ∈ Top , 𝑟 ∈ Top ↦ ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑟 ∣ ( 𝑟 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑠 ↦ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cxko | ⊢ ↑ko | |
| 1 | vs | ⊢ 𝑠 | |
| 2 | ctop | ⊢ Top | |
| 3 | vr | ⊢ 𝑟 | |
| 4 | ctg | ⊢ topGen | |
| 5 | cfi | ⊢ fi | |
| 6 | vk | ⊢ 𝑘 | |
| 7 | vx | ⊢ 𝑥 | |
| 8 | 3 | cv | ⊢ 𝑟 |
| 9 | 8 | cuni | ⊢ ∪ 𝑟 |
| 10 | 9 | cpw | ⊢ 𝒫 ∪ 𝑟 |
| 11 | crest | ⊢ ↾t | |
| 12 | 7 | cv | ⊢ 𝑥 |
| 13 | 8 12 11 | co | ⊢ ( 𝑟 ↾t 𝑥 ) |
| 14 | ccmp | ⊢ Comp | |
| 15 | 13 14 | wcel | ⊢ ( 𝑟 ↾t 𝑥 ) ∈ Comp |
| 16 | 15 7 10 | crab | ⊢ { 𝑥 ∈ 𝒫 ∪ 𝑟 ∣ ( 𝑟 ↾t 𝑥 ) ∈ Comp } |
| 17 | vv | ⊢ 𝑣 | |
| 18 | 1 | cv | ⊢ 𝑠 |
| 19 | vf | ⊢ 𝑓 | |
| 20 | ccn | ⊢ Cn | |
| 21 | 8 18 20 | co | ⊢ ( 𝑟 Cn 𝑠 ) |
| 22 | 19 | cv | ⊢ 𝑓 |
| 23 | 6 | cv | ⊢ 𝑘 |
| 24 | 22 23 | cima | ⊢ ( 𝑓 “ 𝑘 ) |
| 25 | 17 | cv | ⊢ 𝑣 |
| 26 | 24 25 | wss | ⊢ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 |
| 27 | 26 19 21 | crab | ⊢ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } |
| 28 | 6 17 16 18 27 | cmpo | ⊢ ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑟 ∣ ( 𝑟 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑠 ↦ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) |
| 29 | 28 | crn | ⊢ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑟 ∣ ( 𝑟 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑠 ↦ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) |
| 30 | 29 5 | cfv | ⊢ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑟 ∣ ( 𝑟 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑠 ↦ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) |
| 31 | 30 4 | cfv | ⊢ ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑟 ∣ ( 𝑟 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑠 ↦ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) |
| 32 | 1 3 2 2 31 | cmpo | ⊢ ( 𝑠 ∈ Top , 𝑟 ∈ Top ↦ ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑟 ∣ ( 𝑟 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑠 ↦ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
| 33 | 0 32 | wceq | ⊢ ↑ko = ( 𝑠 ∈ Top , 𝑟 ∈ Top ↦ ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑟 ∣ ( 𝑟 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑠 ↦ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |