This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of simple paths of a fixed length as word. (Contributed by Alexander van der Vekens, 1-Mar-2018) (Revised by AV, 11-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wspthsn | ⊢ ( 𝑁 WSPathsN 𝐺 ) = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑔 = 𝐺 ) → ( 𝑛 WWalksN 𝑔 ) = ( 𝑁 WWalksN 𝐺 ) ) | |
| 2 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( SPaths ‘ 𝑔 ) = ( SPaths ‘ 𝐺 ) ) | |
| 3 | 2 | breqd | ⊢ ( 𝑔 = 𝐺 → ( 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 ↔ 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) ) |
| 4 | 3 | exbidv | ⊢ ( 𝑔 = 𝐺 → ( ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 ↔ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) ) |
| 5 | 4 | adantl | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑔 = 𝐺 ) → ( ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 ↔ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ) ) |
| 6 | 1 5 | rabeqbidv | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑔 = 𝐺 ) → { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 } = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } ) |
| 7 | df-wspthsn | ⊢ WSPathsN = ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 } ) | |
| 8 | ovex | ⊢ ( 𝑁 WWalksN 𝐺 ) ∈ V | |
| 9 | 8 | rabex | ⊢ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } ∈ V |
| 10 | 6 7 9 | ovmpoa | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( 𝑁 WSPathsN 𝐺 ) = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } ) |
| 11 | 7 | mpondm0 | ⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( 𝑁 WSPathsN 𝐺 ) = ∅ ) |
| 12 | df-wwlksn | ⊢ WWalksN = ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ { 𝑤 ∈ ( WWalks ‘ 𝑔 ) ∣ ( ♯ ‘ 𝑤 ) = ( 𝑛 + 1 ) } ) | |
| 13 | 12 | mpondm0 | ⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( 𝑁 WWalksN 𝐺 ) = ∅ ) |
| 14 | 13 | rabeqdv | ⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } = { 𝑤 ∈ ∅ ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } ) |
| 15 | rab0 | ⊢ { 𝑤 ∈ ∅ ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } = ∅ | |
| 16 | 14 15 | eqtrdi | ⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } = ∅ ) |
| 17 | 11 16 | eqtr4d | ⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( 𝑁 WSPathsN 𝐺 ) = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } ) |
| 18 | 10 17 | pm2.61i | ⊢ ( 𝑁 WSPathsN 𝐺 ) = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 } |