This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of simple paths of a fixed length as word. (Contributed by Alexander van der Vekens, 1-Mar-2018) (Revised by AV, 11-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wspthsn | |- ( N WSPathsN G ) = { w e. ( N WWalksN G ) | E. f f ( SPaths ` G ) w } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 | |- ( ( n = N /\ g = G ) -> ( n WWalksN g ) = ( N WWalksN G ) ) |
|
| 2 | fveq2 | |- ( g = G -> ( SPaths ` g ) = ( SPaths ` G ) ) |
|
| 3 | 2 | breqd | |- ( g = G -> ( f ( SPaths ` g ) w <-> f ( SPaths ` G ) w ) ) |
| 4 | 3 | exbidv | |- ( g = G -> ( E. f f ( SPaths ` g ) w <-> E. f f ( SPaths ` G ) w ) ) |
| 5 | 4 | adantl | |- ( ( n = N /\ g = G ) -> ( E. f f ( SPaths ` g ) w <-> E. f f ( SPaths ` G ) w ) ) |
| 6 | 1 5 | rabeqbidv | |- ( ( n = N /\ g = G ) -> { w e. ( n WWalksN g ) | E. f f ( SPaths ` g ) w } = { w e. ( N WWalksN G ) | E. f f ( SPaths ` G ) w } ) |
| 7 | df-wspthsn | |- WSPathsN = ( n e. NN0 , g e. _V |-> { w e. ( n WWalksN g ) | E. f f ( SPaths ` g ) w } ) |
|
| 8 | ovex | |- ( N WWalksN G ) e. _V |
|
| 9 | 8 | rabex | |- { w e. ( N WWalksN G ) | E. f f ( SPaths ` G ) w } e. _V |
| 10 | 6 7 9 | ovmpoa | |- ( ( N e. NN0 /\ G e. _V ) -> ( N WSPathsN G ) = { w e. ( N WWalksN G ) | E. f f ( SPaths ` G ) w } ) |
| 11 | 7 | mpondm0 | |- ( -. ( N e. NN0 /\ G e. _V ) -> ( N WSPathsN G ) = (/) ) |
| 12 | df-wwlksn | |- WWalksN = ( n e. NN0 , g e. _V |-> { w e. ( WWalks ` g ) | ( # ` w ) = ( n + 1 ) } ) |
|
| 13 | 12 | mpondm0 | |- ( -. ( N e. NN0 /\ G e. _V ) -> ( N WWalksN G ) = (/) ) |
| 14 | 13 | rabeqdv | |- ( -. ( N e. NN0 /\ G e. _V ) -> { w e. ( N WWalksN G ) | E. f f ( SPaths ` G ) w } = { w e. (/) | E. f f ( SPaths ` G ) w } ) |
| 15 | rab0 | |- { w e. (/) | E. f f ( SPaths ` G ) w } = (/) |
|
| 16 | 14 15 | eqtrdi | |- ( -. ( N e. NN0 /\ G e. _V ) -> { w e. ( N WWalksN G ) | E. f f ( SPaths ` G ) w } = (/) ) |
| 17 | 11 16 | eqtr4d | |- ( -. ( N e. NN0 /\ G e. _V ) -> ( N WSPathsN G ) = { w e. ( N WWalksN G ) | E. f f ( SPaths ` G ) w } ) |
| 18 | 10 17 | pm2.61i | |- ( N WSPathsN G ) = { w e. ( N WWalksN G ) | E. f f ( SPaths ` G ) w } |