This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the collection of simple paths of a fixed length as word over the set of vertices. (Contributed by Alexander van der Vekens, 1-Mar-2018) (Revised by AV, 11-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-wspthsn | ⊢ WSPathsN = ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cwwspthsn | ⊢ WSPathsN | |
| 1 | vn | ⊢ 𝑛 | |
| 2 | cn0 | ⊢ ℕ0 | |
| 3 | vg | ⊢ 𝑔 | |
| 4 | cvv | ⊢ V | |
| 5 | vw | ⊢ 𝑤 | |
| 6 | 1 | cv | ⊢ 𝑛 |
| 7 | cwwlksn | ⊢ WWalksN | |
| 8 | 3 | cv | ⊢ 𝑔 |
| 9 | 6 8 7 | co | ⊢ ( 𝑛 WWalksN 𝑔 ) |
| 10 | vf | ⊢ 𝑓 | |
| 11 | 10 | cv | ⊢ 𝑓 |
| 12 | cspths | ⊢ SPaths | |
| 13 | 8 12 | cfv | ⊢ ( SPaths ‘ 𝑔 ) |
| 14 | 5 | cv | ⊢ 𝑤 |
| 15 | 11 14 13 | wbr | ⊢ 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 |
| 16 | 15 10 | wex | ⊢ ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 |
| 17 | 16 5 9 | crab | ⊢ { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 } |
| 18 | 1 3 2 4 17 | cmpo | ⊢ ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 } ) |
| 19 | 0 18 | wceq | ⊢ WSPathsN = ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 } ) |