This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nontrivial weakly inaccessible cardinal is a fixed point of the aleph function. (Contributed by Mario Carneiro, 29-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | winafp | |- ( ( A e. InaccW /\ A =/= _om ) -> ( aleph ` A ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | winalim2 | |- ( ( A e. InaccW /\ A =/= _om ) -> E. x ( ( aleph ` x ) = A /\ Lim x ) ) |
|
| 2 | vex | |- x e. _V |
|
| 3 | limelon | |- ( ( x e. _V /\ Lim x ) -> x e. On ) |
|
| 4 | 2 3 | mpan | |- ( Lim x -> x e. On ) |
| 5 | alephle | |- ( x e. On -> x C_ ( aleph ` x ) ) |
|
| 6 | 4 5 | syl | |- ( Lim x -> x C_ ( aleph ` x ) ) |
| 7 | 6 | ad2antll | |- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( ( aleph ` x ) = A /\ Lim x ) ) -> x C_ ( aleph ` x ) ) |
| 8 | simprl | |- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( ( aleph ` x ) = A /\ Lim x ) ) -> ( aleph ` x ) = A ) |
|
| 9 | 7 8 | sseqtrd | |- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( ( aleph ` x ) = A /\ Lim x ) ) -> x C_ A ) |
| 10 | 8 | fveq2d | |- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( ( aleph ` x ) = A /\ Lim x ) ) -> ( cf ` ( aleph ` x ) ) = ( cf ` A ) ) |
| 11 | alephsing | |- ( Lim x -> ( cf ` ( aleph ` x ) ) = ( cf ` x ) ) |
|
| 12 | 11 | ad2antll | |- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( ( aleph ` x ) = A /\ Lim x ) ) -> ( cf ` ( aleph ` x ) ) = ( cf ` x ) ) |
| 13 | 10 12 | eqtr3d | |- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( ( aleph ` x ) = A /\ Lim x ) ) -> ( cf ` A ) = ( cf ` x ) ) |
| 14 | elwina | |- ( A e. InaccW <-> ( A =/= (/) /\ ( cf ` A ) = A /\ A. y e. A E. z e. A y ~< z ) ) |
|
| 15 | 14 | simp2bi | |- ( A e. InaccW -> ( cf ` A ) = A ) |
| 16 | 15 | ad2antrr | |- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( ( aleph ` x ) = A /\ Lim x ) ) -> ( cf ` A ) = A ) |
| 17 | 13 16 | eqtr3d | |- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( ( aleph ` x ) = A /\ Lim x ) ) -> ( cf ` x ) = A ) |
| 18 | cfle | |- ( cf ` x ) C_ x |
|
| 19 | 17 18 | eqsstrrdi | |- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( ( aleph ` x ) = A /\ Lim x ) ) -> A C_ x ) |
| 20 | 9 19 | eqssd | |- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( ( aleph ` x ) = A /\ Lim x ) ) -> x = A ) |
| 21 | 20 | fveq2d | |- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( ( aleph ` x ) = A /\ Lim x ) ) -> ( aleph ` x ) = ( aleph ` A ) ) |
| 22 | 21 8 | eqtr3d | |- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( ( aleph ` x ) = A /\ Lim x ) ) -> ( aleph ` A ) = A ) |
| 23 | 1 22 | exlimddv | |- ( ( A e. InaccW /\ A =/= _om ) -> ( aleph ` A ) = A ) |