This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for converse. (Contributed by FL, 19-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnveqb | ⊢ ( ( Rel 𝐴 ∧ Rel 𝐵 ) → ( 𝐴 = 𝐵 ↔ ◡ 𝐴 = ◡ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveq | ⊢ ( 𝐴 = 𝐵 → ◡ 𝐴 = ◡ 𝐵 ) | |
| 2 | dfrel2 | ⊢ ( Rel 𝐴 ↔ ◡ ◡ 𝐴 = 𝐴 ) | |
| 3 | dfrel2 | ⊢ ( Rel 𝐵 ↔ ◡ ◡ 𝐵 = 𝐵 ) | |
| 4 | cnveq | ⊢ ( ◡ 𝐴 = ◡ 𝐵 → ◡ ◡ 𝐴 = ◡ ◡ 𝐵 ) | |
| 5 | eqeq2 | ⊢ ( 𝐵 = ◡ ◡ 𝐵 → ( ◡ ◡ 𝐴 = 𝐵 ↔ ◡ ◡ 𝐴 = ◡ ◡ 𝐵 ) ) | |
| 6 | 4 5 | imbitrrid | ⊢ ( 𝐵 = ◡ ◡ 𝐵 → ( ◡ 𝐴 = ◡ 𝐵 → ◡ ◡ 𝐴 = 𝐵 ) ) |
| 7 | 6 | eqcoms | ⊢ ( ◡ ◡ 𝐵 = 𝐵 → ( ◡ 𝐴 = ◡ 𝐵 → ◡ ◡ 𝐴 = 𝐵 ) ) |
| 8 | 3 7 | sylbi | ⊢ ( Rel 𝐵 → ( ◡ 𝐴 = ◡ 𝐵 → ◡ ◡ 𝐴 = 𝐵 ) ) |
| 9 | eqeq1 | ⊢ ( 𝐴 = ◡ ◡ 𝐴 → ( 𝐴 = 𝐵 ↔ ◡ ◡ 𝐴 = 𝐵 ) ) | |
| 10 | 9 | imbi2d | ⊢ ( 𝐴 = ◡ ◡ 𝐴 → ( ( ◡ 𝐴 = ◡ 𝐵 → 𝐴 = 𝐵 ) ↔ ( ◡ 𝐴 = ◡ 𝐵 → ◡ ◡ 𝐴 = 𝐵 ) ) ) |
| 11 | 8 10 | imbitrrid | ⊢ ( 𝐴 = ◡ ◡ 𝐴 → ( Rel 𝐵 → ( ◡ 𝐴 = ◡ 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 12 | 11 | eqcoms | ⊢ ( ◡ ◡ 𝐴 = 𝐴 → ( Rel 𝐵 → ( ◡ 𝐴 = ◡ 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 13 | 2 12 | sylbi | ⊢ ( Rel 𝐴 → ( Rel 𝐵 → ( ◡ 𝐴 = ◡ 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 14 | 13 | imp | ⊢ ( ( Rel 𝐴 ∧ Rel 𝐵 ) → ( ◡ 𝐴 = ◡ 𝐵 → 𝐴 = 𝐵 ) ) |
| 15 | 1 14 | impbid2 | ⊢ ( ( Rel 𝐴 ∧ Rel 𝐵 ) → ( 𝐴 = 𝐵 ↔ ◡ 𝐴 = ◡ 𝐵 ) ) |