This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Thus, there is at most one isomorphism between any two set-like well-ordered classes. Class version of wemoiso2 . (Contributed by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | weisoeq2 | |- ( ( ( S We B /\ S Se B ) /\ ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) ) -> F = G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isocnv | |- ( F Isom R , S ( A , B ) -> `' F Isom S , R ( B , A ) ) |
|
| 2 | isocnv | |- ( G Isom R , S ( A , B ) -> `' G Isom S , R ( B , A ) ) |
|
| 3 | 1 2 | anim12i | |- ( ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) -> ( `' F Isom S , R ( B , A ) /\ `' G Isom S , R ( B , A ) ) ) |
| 4 | weisoeq | |- ( ( ( S We B /\ S Se B ) /\ ( `' F Isom S , R ( B , A ) /\ `' G Isom S , R ( B , A ) ) ) -> `' F = `' G ) |
|
| 5 | 3 4 | sylan2 | |- ( ( ( S We B /\ S Se B ) /\ ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) ) -> `' F = `' G ) |
| 6 | simprl | |- ( ( ( S We B /\ S Se B ) /\ ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) ) -> F Isom R , S ( A , B ) ) |
|
| 7 | isof1o | |- ( F Isom R , S ( A , B ) -> F : A -1-1-onto-> B ) |
|
| 8 | f1orel | |- ( F : A -1-1-onto-> B -> Rel F ) |
|
| 9 | 6 7 8 | 3syl | |- ( ( ( S We B /\ S Se B ) /\ ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) ) -> Rel F ) |
| 10 | simprr | |- ( ( ( S We B /\ S Se B ) /\ ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) ) -> G Isom R , S ( A , B ) ) |
|
| 11 | isof1o | |- ( G Isom R , S ( A , B ) -> G : A -1-1-onto-> B ) |
|
| 12 | f1orel | |- ( G : A -1-1-onto-> B -> Rel G ) |
|
| 13 | 10 11 12 | 3syl | |- ( ( ( S We B /\ S Se B ) /\ ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) ) -> Rel G ) |
| 14 | cnveqb | |- ( ( Rel F /\ Rel G ) -> ( F = G <-> `' F = `' G ) ) |
|
| 15 | 9 13 14 | syl2anc | |- ( ( ( S We B /\ S Se B ) /\ ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) ) -> ( F = G <-> `' F = `' G ) ) |
| 16 | 5 15 | mpbird | |- ( ( ( S We B /\ S Se B ) /\ ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) ) -> F = G ) |